

Second generation biofuels; Fast pyrolysis liquids

Erik Heeres

Department of Chemical Engineering

University of Groningen

The Netherlands

Outline

- > Introduction
 - Role of biomass
 - Biomass conversion technology
 - Second generation biofuels
- > Fast pyrolysis oil
 - Properties
 - Processes
 - Potential
- > Research example
- > Conclusions

Role of biomass in energy transitions

Source: Shell Sustained Growth scenario

Biomass conversion technology

- > Combustion
- > Gasification
- > Liquefaction
 - Pyrolysis
 - HTU
- > Fermentation
- > Extraction

Second generation biofuels

- > Bioethanol from lignocellulosic biomass
- > Pyrolysis oil
- > HTU (hydrothermal upgrading)
- > Syn-gas conversions to FT-diesel, DME, Hydrogen
- > Hydrocarbons/plant oils from Algea

Application of cheap, non-food lignocellulosic biomass

Fast Pyrolysis

Combustion in the absence of oxygen

Short contacttime in gasphase (< 1 s)

High liquid yields (70+%)

Atmospheric pressure

 $400 - 600^{\circ}$ C

Fast pyrolysis products

From:http://www.btgworld.com/

Feeds

- > Flexible
 - Woody biomass
 - Waste products
 - Straw
 - Cacao shells
 - Algea
 - Gras
- > Water content < 10 wt%
- > Diameter < 1 cm

Typical product properties

> Oxygen content: 45-50 %

> pH 2-4

> Water Content 15-20 wt%

> Density 1.15 kg/l

> Caloric value 16-18 MJ/kg

> Limited storage stability

Pyrolysis oil versus virgin biomass

Liquid form of biomass

- Higher energy density (20 versus 4 GJ/m³⁾
- Easier to transport and handle
- Less contaminants (e.g. ash)

Pyrolysis oil applications

Stand alone Boilers

Chemicals

Co-firing power stations

Co-feeding
Oil refineries

Combustion engines
Turbines

Available technology

- > Fluidised bed reactors
- > Circulation fluidised bed reactors
- > Vacuum pyrolysis reactors
- > Screw reactors
- > Ablative reactors
- > Rotating cone reactors

Rotating cone technology

Source: BTG

Rotating cone technology

Technology status

- > Dynamotive
 - 5 t/h Ontario (2004), fluidised bed technology

- > BTG
 - 2 t/h Malaysia (2005), rotating cone technology

> Ensys (food flavouring)

R&D demonstration Full commercial

Pyrolysis oil upgrading

- > Extend application range
- > Strategies
 - Physical upgrading
 - Reactive upgrading

UOP to Develop Second-Generation Biofeedstock Technology Under U.S. Department of Energy Award

October 28, 2008 10:00 AM ET

UOP and partners will develop technology to improve the stability of pyrolysis oil to ensure its viability as a source for power and transportation fuels

DES PLAINES, Ill., Oct. 28 /PRNewswire/ -- UOP LLC, a Honeywell HON company, announced today that it was awarded a \$1.5 million grant from the U.S. Department of Energy (DOE) to develop economically viable technology to stabilize pyrolysis oil from second generation biomass feedstocks for use as a renewable fuel source.

Physical upgrading

Chemical upgrading

Research example: hydrodeoxygenation

$$-(CH_2O)- + H_2$$
 $-(CH_2)- + H_2O$

- > Reduction of acid content
- > Stabilization
- > Increases energy content (lowering oxygen content)
- > Formation of a two phase system after reaction, easy separation of water

Objective RUG upgrading activity

 Determine the technical feasibility of upgrading pyrolysis oil to a liquid biofuel by catalytic HDO

Approach

- Exploratory catalyst screening studies using pyrolysis oil
- Model component studies with selected catalyst
- Catalyst design
- Process research and development.
- Engine tests with HDO oil

Visual appearance

Ru/C 5%, 350 °C 200 bar H₂,. Reaction time of 4h.

Catalyst studies using Pyrolysis oil

Catalyst screening in semi-Batch system at 350 °C and 200 bar of H₂ for 4h.

Wildschut, J., Heeres, H.J., Catalyst Screening for the Hydrodeoxygenation of Pyrolysis Oil., in preparation.

HDO oil properties

Property	value
Density (kg/l) Water content (%-wt) Acidity (pH) Flash point (°C)	0.8 - 0.9 1-2 5-6 35- 39
Elemental composition (%-wt) C H O Heating value (MJ/kg) LHV	~85 ~10 ~5 40

 $350\,^\circ\,$ C and 200 bar for 4h with a Ru/C catalyst.

Engine tests

- Hatz engine
- 5 Watt
- Minimal modifications

Engine tests

Gas	Diesel	HDO oil
O ₂ (%) CO (ppm) NO (ppm) NO ₂ (ppm) NO _x (ppm) SO ₂ (ppm) CO ₂ (%)	12.8 643 723 21 744 0 6	12.4 1146 371 7 378 0 6.3

Red numbers indicate significant differences

Results engine tests

- Higher CO in exhaust compared to diesel
- Lower NO_x in exhaust compared to diesel
- Carbon deposition of the atomizer

Conclusions

- Fast pyrolysis technology is entering the commercialisation stage
- Susbtantial R&D activities ongoing on upgrading to extend application range
- Catalytic hydrotreatment promising option to obtain hydrocarbon like components to be used for
 - Transportation fuels
 - Co-feeding to existing refineries

Acknowledgement

- > Jelle Wildschut
- Farchad Mahfud
- > Agnes Ardiyanti
- > Buana Girisuta
- > Senter Novem for sponsoring HDO research (grant 0268-02-03-03-0001 and 2020-04-90-08-001)
- > BTG (R. Venderbosch) for providing pyrolysis oil and stimulating discussions
- > UTwente (S. Kersten)