

Energy research Centre of the Netherlands

Crystalline Si Photovoltaics

Arthur Weeber

Outline

- Short introduction ECN
- Introduction ECN Solar Energy
- General Si solar cells
- Crystalline Si Photovoltaics
 - Feedstock
 - Wafering
 - Cell processing
 - Module technology
 - Costs and environmental
- Summary

Petten: ECN; NRG; JRC; Covidien

Energy research Centre of the Netherlands

Targets ECN research

ECN Programme units + Contribution

Energy research Centre of the Netherlands

ECN Solar Energy

Solar Energy

- Silicon Photovoltaics
- Thin-Film Photovoltaics
- PV Module Technology

Objective:

- Price of solar electricity in 2015 the same as consumer electricity price, and after that even lower
 - High efficiency
 - Reduction of material use
 - Cost effective and environmental friendly processes and products
 - Long lifetime of the modules

Energy research Centre of the Netherlands

ECN Solar Energy

Thin-film photovoltaics

Sensitised oxides

Energy research Centre of the Netherlands

ECN Solar Energy

Thin-film photovoltaics

• Organic solar cells

Energy research Centre of the Netherlands

ECN Solar Energy

Thin-film photovoltaics

- Thin-film silicon
 - R-2-R deposition of (n,i,p) silicon on foils
 - Development of thin-film Si tandems

Crystalline Si PV technology

Objective:

- Price of solar electricity in 2015 the same as consumer electricity price, and after that even lower
 - High efficiency
 - 18% module efficiency for crystalline Si PV
 - Reduction of material usage
 - Thin wafers (<150 µm compared to current ~200 µm)
 - Cost effective and environmental friendly processes and products
 - Long lifetime of the modules (>30 yr for crystalline Si)
 - Energy Pay Back Time < 1 yr

Cell structure

Crystalline silicon solar cell (minority carrier device)

- Base: B doped Si (p-type)
- Emitter: P doped layer (n-type)
 - Recombination losses in base and emitter
 - Voltage over pn junction
- Metallization for contacts
 - Shading losses
 - Resistance losses
- Antireflection coating to enhance current

Cell structure

Crystalline silicon solar cell

- Base: B doped Si (p-type)
- Emitter: P doped layer (n-type)
 - Voltage over pn junction
 - Recombination losses
- BSF: p⁺ doped layer
 - Highly doped
 - Reduced recombination

recombination

Cell structure

Losses in crystalline silicon solar cell

- Colour mismatchFundamental recombination
- Additional recombination
 - Impurities, defects, surfaces
- Shading
- Reflection, absorption and transmission
 - Absorption at the rear
- Resistance
- Non-ideal band gap

Crystalline Si solar cell: η =13-20%

η≤**30%**

Crystalline Si PV technology

- Feedstock
 - Effect impurities on cell output
- Wafers
 - Monocrystalline Si
 - Multicrystalline Si
- Cell technology
 - High efficiency with industrial in-line processing
- Module Technology
 - Module design integrated with cell concept
 - Simple interconnection and encapsulation
- Costs and environmental aspects

Crystalline Si PV technology

- Feedstock
 - Effect impurities on cell output
- Wafers
 - Monocrystalline Si
 - Multicrystalline Si
- Cell technology
 - High efficiency with industrial in-line processing
- Module Technology
 - Module design integrated with cell concept
 - Simple interconnection and encapsulation
- Costs and environmental aspects

Feedstock production

Feedstock production

- Direct route: SOLSILC process
- plasma furnace: SiC from pure SiO₂ and pure C pellets of SiC and SiO₂ → Si(L)

Feedstock: ingot growth

• Multicrystalline Si ingot growth

Impurities added to feedstock

Effect Ti and O on cell output clearly visible

Energy research Centre of the Netherlands

Impurities added to feedstock

- Ingot growth
- Wafering
- Cell processing
- Characterization
- Model development
 - $1/L_{eff}^2 \propto 1/\tau \propto C_{imp}$
 - Segregation during growth
 - Solar cell modeling
- Needed to define Solar Grade Si

Impurities added to feedstock

- Ingot growth
- Wafering
- Cell processing
- Characterization
- Model development
 - $1/L_{eff}^2 \propto 1/\tau \propto C_{imp}$
 - Segregation during growth
 - Solar cell modeling
- Needed to define Solar Grade Si

Bridgman Solidification

<u>E</u>dge defined <u>F</u>ilm fed <u>G</u>rowth

<u>Ribbon</u> <u>Growth on</u> <u>Substrate</u>

Energy research Centre of the Netherlands

• Multicrystalline Si ingot growth

 From ingot to mc-Si wafer

Energy research Centre of the Netherlands

- High quality monocrystalline Si material
 - Low impurity concentration
 - Low defect concentration
 - Higher efficiency (15-17% in industry, 20% pilot)
 - Higher costs per cell
- Lower quality multicrystalline Si material (mc-Si)
 - Higher impurity concentration
 - More defects
 - Lower efficiency (13-15% in industry, >16% pilot)
 - Lower costs per cell
- For both technologies: high sawing losses (about 50%!)

- Ribbon technologies (multicrystalline Si)
- Substrate growing and crystallization in the same direction

- ECN's ribbon technology Ribbon Growth on Substrate RGS
- Substrate growing perpendicular to crystallization Ca

- ECN's ribbon technology Ribbon Growth on Substrate RGS
- Substrate growing perpendicular to crystallization

Energy research Centre of the Netherlands

Ribbons:

- Better use of Si material (about factor 2)
 But
- Lower initial material quality
- Lower efficiencies
- EFG/SR: about 14% (industry)
- RGS: about 13% (lab)
 - Very high throughput

Material	Pull Speed [cm/min]	Through- put [cm ² /min]	Furnaces per 100 MW
EFG	1.7	165	100
SR	1-2	5-16	1175
RGS	600	7500	2-3

*[J. Kalejs, E-MRS 2001 Strasbourg]

Wafer Technology

RGS cell efficiencies using industrial process

- Average efficiency 12.5%.
- Current top efficiency 13%^{confirmed}
- High efficiency lab processing 14.4%^{confirmed}
- ~100 µm thin RGS wafer made
 - Efficiency around 11%
 - 2.9 g Si/Wp (nowadays ~10 g Si/Wp)

Energy research Centre of the Netherlands

Cell processing

- Saw damage removal
 - Texturing for enhanced light coupling (better efficiencies)
- Emitter diffusion
 - Material improvement by gettering
- SiN_x deposition as antireflection layer
 - Material improvement by passivation
 - Reduced surface recombination (surface passivation)
- Metallization
 - Ag front side
 - Al rear side (so-called Back Surface Field)
- Sintering for contact formation

Cell processing

Batch processing

- Wafers in carriers
- Each process step well controlled
- Used for high efficiency processing

Cell processing

ECN's inline processing

Horizontal wafer transport on belts (wafer in; cell out)

- No wafer carriers
- Large and thin wafers easier to handle (cost reduction)

Cell processing

Examples from industry

Batch processing BP Solar

In-line processing Solland Solar

Cell processing

ECN Baseline process

- Multicrystalline p-type Si
- Acidic texturing / saw damage removal
- P diffusion using belt furnace
- Deposition of SiN_x
- Metallization (Ag front, full Al rear)
- Simultaneous sintering both contacts

<u>Results</u>

Processing complete columns of wafers during two years

- Average 16%
- In industry 15-16%

Wet chemical etching

Sintering contacts

Acidic texturing of mc-Si

Alkaline and acidic etch

Acidic texturing of mc-Si

Energy research Centre of the Netherlands

Acidic texturing of mc-Si

- Lower reflection, higher efficiency
 - About 0.5% absolute
- Better appearance

acid etch

+ AR-coating

Surface structure texturing Si

- Monocrystalline Si
 - Alkaline etching (NaOH or KOH)
 - Anisotropic etching
 - (111) planes slowest etching rate
 - Pyramids on (100) substrates
- Multicrystalline Si
 - HF/HNO₃ etching
 - Isotropic etching
 - Random structure

Alkaline etching of Si Si + OH⁻ + H₂O \rightarrow SiO₃^{2–} + H_{2 gas}

- Higher concentrations and higher T
 - Almost isotropic etching
 - High etching rate
 - Used to remove saw damage (5-10 µm)
 - High reflectance (~30%)

Energy research Centre of the Netherlands

Alkaline etching of Si

- Lower concentrations and lower T
 - Anisotropic etching
 - (111) planes slowest etching rate
 - Pyramids as texture on (100) substrates
 - Low reflectance (~10%)
 - But, low etching rate

Energy research Centre of the Netherlands

Acidic etching of Si

Mixture HF/HNO₃

Oxidation

 $3 \text{ Si} + 4 \text{ HNO}_3 \rightarrow 3 \text{ SiO}_2 + 4 \text{ NO}_{gas} + 2 \text{ H}_2\text{O}$ Oxide removal

 $SiO_2 + 4 HF \rightarrow SiF_{4 gas} + 2 H_2O$

- Obtained surface morphology depends on composition
 - Polishing
 - Defect etching
 - Texturing

Emitter processing

Needed to form p-n junction

- Apply P source
- Diffusion at ~900 C for about 10 minutes
- Depth about 0.5 µm
- P concentration at surface: > 2×10²⁰ cm⁻³
 - Higher concentration needed for good contacting
 - However, it will result in additional recombination losses

emitter losses

Improved emitter/front side processing can give an efficiency gain of more than 0.5% absolute

Emitter processing

Effect dopant concentration on IQE

- Improved blue response (up to 550 nm) for lower dopant concentration
- Higher V_{oc} and higher J_{sc} : higher efficiency!

Emitter processing

Additional effect of emitter processing

- So-called gettering
 - Diffusion of impurities to P rich layers (P-gettering)
 - Impurities will not affect efficiency in those P rich layers
- Improved bulk quality and, thus, higher efficiency

Applied using chemical vapour deposition

- Low pressure chemical vapour deposition (only surface passivation, ~700 C)
- Plasma enhanced chemical vapour deposition (different systems, ~400 C, 0.5-10 nm/s)
- Sputtering (several nm/s)

Functions SiN_x:H layer

- Antireflection coating (70-80 nm)
- Surface passivation (reduced recombination at the surface)
- Bulk passivation (improved material quality)
 - During anneal H diffuses into bulk and makes defects/impurities electrically inactive

SiN_x deposition

Plasma Enhanced Chemical Vapour Deposition (PECVD)

- Parallel plate system Direct plasma
 - Wafers as electrodes
 - Ion bombardment dependent on plasma frequency
 - Damaged layer

- No ion bombardment

ECN's MicroWave Remote PECVD

• Deposition rate about 1 nm/s

Expanding Thermal Plasma (ETP)

- Developed by TU/e
- Deposition rate 5-10 nm/s ٠
- TU Delft: for thin film Si depositions

Optical specifications SiN_x:H layer

• Refractive index: *n*=2.1 higher *n* causes absorption at lower wavelength

$$n_1 = \sqrt{n_0 n_2} \qquad \qquad d_1 = \frac{\lambda_0}{4 n_1}$$

- Ideal for air-Si: *n*=1.9; d=~80 nm
- Ideal for air-glass-Si: n=2.3; d=~65 nm (absorption SiN_x too high)
- *n* can be tuned with gas composition
- Higher *n*: more Si (SiH₄)
- Lower *n*: more N (NH₃)

SiN_x deposition

Optical specifications SiN_x:H layer

• Different layer thickness: different colour

Gettering and bulk passivation (emitter and SiN_x:H)

Improved bulk quality using gettering and passivation

- Lifetime>100 µs will hardly affect cell efficiency (diffusion length 2 times cell thickness)
- Besides higher efficiency, gettering and passivation will result in a narrower efficiency distribution.

Screen-printing process and sintering in belt furnace

Energy research Centre of the Netherlands

Principle screen-printing process

- Metallization paste is 'pressed' through pattern in screen
- Paste contains metal particles and oxides (etches Si at higher T)

Ag front side metallization

• Fine line metallization printed through patterned screen

Energy research Centre of the Netherlands

Fine line printing

- Reduced shading losses
- Contact resistance might be critical

- Other techniques:
- Plating (electroless)
- Dispensing

• Pad printing

• Roller printing

Al rear side (Back Surface Field to reduce recombination at surface)

- After sintering step (around 800 C, few seconds) highly doped layer
- · Better BSF when thicker and higher doped

Efficiency ECN process

Results ECN Baseline process

Processing two complete columns (different ingots) of wafers during 2 years

- Average 16.0% (125x125 mm²; 300 µm thin)
- In industry about 15-16% (156x156 mm²; 200 µm thin)

Production line with full ECN-process

Efficiency ECN process

- High-efficiency (17%) in-line process (300 µm thick; 156 cm² mc-Si)
 - 50 cells processed (best efficiency 17.1%; average 16.8%)
 - Module made using cover glass with ARC Full area efficiency 14.8%; encapsulated cell eff: 16.8%

efficiency class

Future improvements

Thin wafers

• Rear side critical

Minority carrier density

Combination of generation and recombination
17.0%: good bulk and rear
15.9%: good bulk, low rear
15.7%: low bulk, good rear
15.3%: low bulk and rear
14.3%: as 15.9%, but thin

Energy research Centre of the Netherlands

Future improvement

Al rear side (Back Surface Field to reduce recombination at surface)

17% reached on 300 µm thick wafers

However:

- Bowing for thinner wafers
- Recombination losses too high for high efficiencies (>18%)
- Internal reflection too low (~70%) for high efficiencies

Future improvements rear side

Thin wafers

- Rear side critical (bowing, reflection, BSF)
- New rear side processing using for example SiN_x
 - Higher efficiencies for thinner wafers

Future improvements rear side

Thin wafers

- New rear side processing using SiN_x
 - 16.4% obtained by ECN with baseline-like processing
 - About 1% absolute higher than reference with AI BSF (obtained efficiency depends on Si material quality)

Future improvements

Thin wafers (less dependent on material quality)

- Improved light management
 - Texturing
 - Light trapping
- Improved emitter (reduce losses)
- Perfect surface passivation
 - Both surfaces
- Less metallization losses
 - Series resistance (contact and line resistance)
 - Reduced shading losses

20% mc-Si cell efficiency should be possible! (long term)

Future improvements

Thin wafers (less dependent on material quality)

- n-type material
 - More tolerant for most impurities
 - 16.7% on mc-Si
 - 18.5% on Cz Si^{confirmed}

20% mc-Si cell efficiency should be possible! (long term)

Other industrial cell concepts

Rear side contacted cell SunPower: 22.4% average!

Energy research Centre of the Netherlands

Other industrial cell concepts

SunPower

- Cell 23.4%
- n-type material
- Module: full area 20.1%

Sanyo

- HIT cell: 22.3%
- n-type material
- Emitter deposited

Energy research Centre of the Netherlands

Record efficiencies (independently confirmed)

- Monocrystalline (4 cm²):
 25.0%

 Monocrystalline (FZ, 147 cm²):
 22.0%

 Monycrystalline (Cz, 100 cm²):
 22.5%

 Multicrystalline (1 cm²):
 20.4%

 Multicrystalline (217 cm²):
 18.7%
- ECN multi (243 cm²): 17.4%

Conventional module technology (soldering)

Conventional module technology

interconnection

lamination

Pilot-line tabber-stringer for interconnection

Energy research Centre of the Netherlands

New module technology:

- New cell designs needed
 - Back contacted
 - Simple interconnection
 - Can be used for thin cells

Energy research Centre of the Netherlands

Emitter Wrap Through:

- No metallization on the front
- Thousands of holes

ECN's PUM concept:

- More energy from attractive cells
- 2-3% less shading
- Resistance losses independent on cell size (only on size unit cell)
- Standard cell processing except:
 - Laser drilling holes
 - Junction isolation around holes

Mother Nature's water lily

Energy research Centre of the Netherlands

ECN's PUM concept:

 Single shot interconnection and encapsulation

Energy research Centre of the Netherlands

ECN's PUM process:

- Foil preparation
- Apply conductive adhesive instead of soldering (lower stress)
- Pick and place cells
- One step curing and encapsulation

ECN's PUM result:

- Full size module
- 16.4% aperture area
 - WORLD RECORD!!

Best PUM cell result up to now:

- 17.4% (243 cm²; 160 µm thin)
- ~80 cells: average 17.2%

At this moment PUM is the only integrated concept for cell and module

ECN's improved PUM: ASPIRe

All Sides Passivated and Interconnected at the Rear

• 16.4% on 243 cm² mc-Si, 160 μ m thin

Metallization pattern courtesy of Solland Solar BV

Pilot line at ECN

Fully automated process for back-contact cells and suitable for thin and fragile cells

Energy research Centre of the Netherlands

PV market

Annual market growth: average more than 40%

Photon International, 2008

www.photon-magazine.com

PHOTON International

PV market

Annual market g

3/2008 March 2008

Solar for energy independence Israel announces electric car project fueled by solar power

Insights from leading PV investor How Good Energies is making a fortune with solar

PHOTON PV Technology Show preview New products on display at upcoming Munich trade fair

Rescue plan for Conergy Interview with new head of global downstream leader

First market survey on TCO equipment Latest on production machines for thin-film metal contacts

The Photovoltaic Magazine

Q-Cells is the new No. 1 Worldwide market survey on cell production 2007 shows changing of the guard

owth rate 2007: ~70% 2007: 4.3 GWp

Energy research Centre of the Netherlands

PV market

Expected market: solar the most important primary energy source

Wissenschaftliche Beirat 2003

Costs PV

Contributes wafer is about 45%! Thinner wafers, or better ribbons, important!

Price solar electricity: 0.20-0.50 €/kWh (depending on location)

NL: ~0.50 €/kWh

- Less material use
 - Thin ribbons
 - Less module materials
- High efficiencies for the same process costs
 - Advanced processing
 - New cell design
- Easy manufacturing
 - Automation
 - Easy module manufacturing
- High lifetime
- Improved yearly system output

• Expected costs

Energy research Centre of the Netherlands

- Expected costs based on learning curves (EU project Photex)
 - Combined effect of technology development, experience,
 - Progress ratio PR should be around 80%

• Expected costs €/kWh 1.0 900 h/a: 0,60 €/kWh 0.8 1800 h/a: **Photovoltaics** 0,30 €/kWh 0.6 Utility peak power • Solar competitive 0.4 **Bulk power** between 2010-2020 0.2 0.0 1990 2000 2030 2010 2020 2040

Source: RWE Energie AG and RSS GmbH

Towards an Effective European Industrial Policy for PV.ppt / 05.06.2004 / Rapp

@ RWE SCHOTT Solar GmbH

Energy research Centre of the Netherlands

Environmental aspects

• Energy Pay Back Time 2005

Environmental aspects

Energy Pay Back Time 2005 and 2010⁺

- Low energy consumption especially for Solar Grade Si
- Low material use (abundance)
- High efficiency
- High lifetime modules
- Environmental friendly processes
- Recycling

Conclusions

- Solar Grade Silicon needed for growing market
 - Effect of impurities on cell efficiency should be known
- Less Si use with ribbons
- Improved processing has led to 17% mc-Si efficiency using in-line processing
- New processes for thin wafers/ribbons under development
- Integrated cell and module design like PUM needed
- High module lifetime

Then

- Cost reduction possible
 - Will be competitive with bulk electricity price
- Energy Pay Back Time can be reduced to <1 year
- Solar energy will be the most important primary energy source in 2100

Applications at ECN

Energy research Centre of the Netherlands

Applications

Energy research Centre of the Netherlands

