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preface
The Bio-based Raw Materials Platform (PGG), part of the Energy Transition in  

The Netherlands, commissioned the Agricultural Economics Research Institute 

(LEI) and the Copernicus Institute of Utrecht University to conduct research on the 

macro-economic impact of large scale deployment of biomass for energy and 

materials in the Netherlands. Two model approaches were applied based on a 

consistent set of scenario assumptions: a bottom-up study including techno-

economic projections of fossil and bio-based conversion technologies and a top-

down study including macro-economic modelling of (global) trade of biomass and 

fossil resources. The results of the top-down and bottom-up modelling work are 

reported separately. The results of the synthesis of the modelling work are 

presented in this report. 
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1 introduction
The transition to a more sustainable energy system leading to a strongly reduced 

dependency on fossil fuels and significant greenhouse gas (GHG) emission 

reductions is an unsurpassed challenge. In the Netherlands, this challenge is 

addressed by the ‘Energy Transition’, in which stakeholder platforms have 

formulated strategies and pathways for different key themes to realise the required 

changes. One of these platforms deals with ‘bio-based raw materials’ (Platform 

Groene Grondstoffen, or PGG), tackling the large-scale and sustainable use of 

biomass for energy and material applications. As a longer term vision, the platform 

has targeted 30% replacement of fossil fuels by biomass resources (assuming a 

stabilised energy use), divided over: 17% of the heating demand, 25% of electricity 

demand, 25% of feedstock use for chemicals and 60% of transport fuels.

Such proposed changes will require large investments in infrastructure and 

conversion capacity. In addition, the technologies that may facilitate such large-

scale use of biomass partly require further development (including biomass 

production and supplies), which will need financial support. Another major 

implication is that such a strategy means a considerable shift in the use and 

production of primary energy carriers. Imported (coal, oil, natural gas) or 

indigenous (natural gas) fossil fuels are to be replaced by imported biomass (e.g. as 

pre-treated material or biofuel) as well as indigenous biomass resources which are 

available (e.g. residues and waste streams) or can be produced (agriculture, algae). 

As a consequence, economic activity will shift to different sectors of the economy. 

In addition to investments in infrastructure and technology development, a ‘bio-

based strategy’ will also generate new economic activity. This is particularly true 

when biomass is produced within the Netherlands (compared to imports of fossil 

fuels). However, even imported biomass, which is further processed in the 

Netherlands, may generate a higher added value to the national economy when 

compared to imported oil and natural gas. The latter require limited further 

processing compared to biorefineries, for example. If this could be realised, this can 

have very significant (positive) impacts on the trade balance of the country, given 

the large annual expenditures on imported energy (see also the Roadmap on 

Sustainable Biomass Import prepared for the PGG, [Faaij, 2006]). In addition, fossil 

energy prices are likely to continue rising in the medium to longer term [IEA 2006b; 

IEA 2007], while there is substantial potential for reducing the production and 

supply costs of biomass cropping systems.

Provided the Netherlands can build and maintain a leading position in the relevant 

areas, other benefits include export opportunities of technology and knowledge and 

reduced GHG emissions (with an equivalent value that may be determined by the 

international carbon market). The latter is inherently considerable, given the 

projected role of biomass in replacing fossil fuels (30% of total fossil fuels replaced). 

Furthermore, developing biomass as a new key pillar of the (national) energy and 

material supply will increase diversity in the energy supply mix and could therefore 
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contribute substantially to improved energy security. A more stable energy supply 

(particularly compared to international supplies of oil and natural gas) also has a 

positive impact on (macro-) economic development. 

With respect to the use of biomaterials, new biochemicals in particular may also 

lead to considerable (energy) savings in the production chain, as highlighted by 

[Sanders et al., 2006] and [Bruggink, 2006] outlined for the PGG. Such indirect 

savings and potentially higher value chemicals will contribute positively to 

economic growth. Another opportunity for the Netherlands may lay in a 

strengthened role as a logistic hub for Europe in the bio-based arena, as such 

developments will also take place throughout the rest of Europe. 

However, the real (net) impact of building a large bio-based industry in the 

Netherlands over the coming 3-4 decades will depend strongly on the cost 

developments of key biomass conversion technologies (such as biorefinery concepts, 

2nd-generation biofuel production technology and advanced power generation) and 

the prices at which biomass resources can be made available. Those costs will then 

be evaluated against the (relative) future costs of fossil fuels (most notably oil and 

gas), which are also uncertain (although likely to follow an upward trend over the 

coming decades). Other economic factors, such as growth rate, sectoral change in 

the (national) economy, prices for CO2
 and agricultural policies (subsidies and 

prices) are also unknown variables. Determining the economic value of a bio-based 

strategy for the Netherlands must therefore be implemented while keeping these 

uncertainties in mind. With improved understanding of the mechanisms and 

uncertainties, more targeted policies and implementation strategies can be devised, 

which is fundamentally important for both the market and the government. Such 

information allows for optimising the (economic) benefits and minimising the risks 

(costs) of implementation and development of a bio-based infrastructure and 

relevant sectors. This justifies a full-blown analysis of these matters. Remarkably, 

to date, such analyses are very rare.

 Objective and scope

The main objective of this study is defined as:

To provide quantitative insight into the macro-economic impacts of the large-scale 

deployment of biomass-based resources and related infrastructure and production 

capacity for the supply of energy and materials.

More specifically, the sub-objectives are: 

Quantitative descriptions of scenarios for biomass use in the Netherlands in  –

2010 to 2030, under different premises of technological development and 

biomass trade. These descriptions include biomass resource availability, 

production and costs, main conversion options for energy and materials and are 

relative to a baseline scenario.

A description of the impact of biomass use in the scenarios with regard to  –

biomass use for energy and materials, fossil primary energy saving, total costs 
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for bio-based production and net costs and GHG emission reduction for fossil-

based substitution by biomass. These impacts are calculated using bottom-up 

information on technologies for biomass production and use, taking into account 

future technological learning.

A quantification of the macro-economic impact of large-scale biomass  –

deployment in the Netherlands. GDP, employment, trade balances with the most 

detailed possible breakdown (including current methods and data) of macro-

economic impacts with respect to GDP impact, sectoral effects (e.g. agriculture, 

chemical industry, energy sector, etc.), employment effects and trade balance of 

bio-based scenarios.

Insights into the uncertainty of key parameters and the impact of these  –

variables on the final results. The selected variables include fossil fuel and CO2
 

prices. The variables ‘technology change’ and ‘international cooperation’ are 

taken into account in the scenario projections.    

A thorough and clear interpretation of results that can be used to formulate 

sound policy strategies, which allows for optimising the (economic) benefits and 

minimising the risks (costs) of implementation and development of a bio-based 

economy.

This study focuses on bio-based production of electricity, liquid fuels for road 

transport and bio-based chemicals. Bio-based production of heat is only taken into 

account for industrial CHP plants in the energy and greenhouse gas balances. 

Stand-alone production of heat from biomass in industries and households is not 

taken into account, as the LEITAP model is not capable of modelling this commodity 

directly. 

A limited selection of biomass conversion technologies is represented in this study. 

For chemicals, the bio-based production is aggregated and represented by three 

conversion options to represent C1 chemicals, C2 chemicals and specialised 

chemicals. Direct production of functionalised chemicals from biorefineries are  not 

included in this study, due to limitations to represent these multiple output options 

in the LEITAP top-down model, as well as limited data available on the (economic) 

performance of these technologies.

The bottom-up scenarios are based on a set of pre-defined technology portfolios for 

biomass conversion. No optimisation modelling tools are used for this study. The 

results do not support information on economic, energetic or environmental optimal 

combinations of technologies or feedstocks. It should be noted that a full 

optimisation study would also require the addition and comparison of competing 

energy and GHG mitigation technologies, such as wind or photovoltaics (PV), but 

also electric or fuel cell vehicles. This is beyond the scope of this study.

 Outline

The structure of this report is as follows. Section 2 describes the methodology of 

this study, section 2.3 summarises the results of the bottom-up scenarios and 
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projections. The results of the top-down projections using the CGE model LEITAP 

are summarised in section 4. Section 5 deals with the discussion of the results via 

an assessment of the bottom-up and top-down results and section 6 lists the 

conclusions of this study. 
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2 Method
In order to quantify the impact of biomass for bioenergy and bio-based materials in 

the Netherlands, this study combines a bottom-up model with a top-down model. 

Detailed bottom-up technology projections of biomass conversion options in 

combination with an advanced multi-sector and multi-region macroeconomic 

computable general equilibrium (CGE) model, support understanding of both the 

impact on the macro-economy as the required technological development, fossil 

energy avoided and greenhouse gas emissions avoided.

To address for change in bio-based production sectors, the CGE model LEITAP is 

extended for bioenergy in the sectors electricity generation, petrol and bulk and 

specialised chemicals. The bottom-up model comprises scenarios of a bio-based 

economy for the electricity, transport fuels and chemicals sectors in the 

Netherlands projected to 2030. Figure 1 summarises the approach and interaction 

between the bottom-up model and the top-down model. A description of the 

individual modelling approaches is given in section 2.1 and 2.2 and in more detail in 

the individual bottom-up and top-down reports. This synthesis report presents the 

combined results of the study in which projections of final energy demand and 

biomass shares of the LEITAP model are used as input parameters for the bottom-

up model.

Figure 1   Model system for macro-economic modelling using bottom-up input data for bioenergy  

and bio-based chemicals
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The model interaction in this study is essentially in one direction, i.e. the results of 

the bottom-up model are translated into bio-based blending shares for the 

electricity, transport fuels and chemical sectors and applied to the LEITAP model as 
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mandatory bio-based blending shares in these sectors. Further model adjustments 

were based on comparisons using the final results of the bottom-up model and the 

top-down model, e.g. technology substitution. Final projections of the LEITAP 

model are used as input for the bottom-up model in order to generate the synthesis 

results. This report summarises both the bottom-up results based on the WLO 

projections and the results based on the LEITAP projections as explained in section 

2.3. 

A bilateral and iterative exchange between the models, represented by the dotted 

lines in Figure 1, would improve consistency between the bottom-up and top-down 

models. However, these calibration steps are not conducted for this study due to 

time constraints. The discussion section deals with the differences between the 

outcomes of the bottom-up and top-down models and discusses possible further 

steps to improve the linkage between the models.

2.1 Bottom-up scenarios

To make future projections of biomass for bioenergy and bio-based materials 

through to 2030 for the Netherlands, this study includes four scenarios. Emphasis 

in these scenarios is on technological development of (biomass) conversion 

technologies and on international cooperation including international trade of 

biomass (Figure 2). The two national scenarios include limited sources of biomass 

available from EU27+1 countries. The two international scenarios include global 

biomass sources available for the Netherlands, such as palm oil, sugar cane and 

eucalyptus. Other than international cooperation, the two national and 

international scenarios include one scenario with low technological development 

and one with high technological development. For the low-tech scenarios 

(NatLowTech and IntLowTech) we assume biomass conversion technologies to be 

used until 2030 that are already commercially available, while for the high-tech 

scenario (NatHighTech and IntHighTech) we assume that advanced (2nd-generation) 

technologies substitute current technologies from 2010 onwards. The IntHighTech 

scenario includes one projection with bio-based synthesis gas in the chemical 

industry and one scenario with both bio-based synthesis gas and substitution of 

bulk and specialised petrochemicals (IntHighTech AC)2. Projections of socio-

economic change and final energy demands were derived from the WLO-scenarios 

(Welfare and Environment) [Janssen et al., 2006].

1	 EU27	+	Norway,	Switzerland	and	Ukraine.

2	 The	IntHighTech	AC	scenario	is	aimed	to	be	more	consistent	with	the	goal	of	the	PGG	to	substitute	

25%	of	fossil-based	raw	materials	in	the	chemical	industry	with	biomass.	This	scenario	includes	

both	bulk	C1	and	C2	chemicals	as	well	as	specialised	chemicals.	Blending	targets	are	derived	from	

Rabou	et	al.	[2006].	It	should	be	noted	however	that,	as	opposed	to	Rabou	et	al.,	this	study	does	

not	include	bio-based	options	with	direct	extraction	and	production	of	functionalised	chemicals	

(biorefinery	concept).		
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Figure 2   Four scenarios for bioenergy in the Netherlands, 2010 – 2030  

The WLO scenarios are displayed in the grey-shaded areas. 
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Figure 2 Four scenarios for bioenergy in the Netherlands, 2010 – 2030. The WLO-scenarios are 

displayed in the gray shaded areas.  
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A selection of biomass conversion technologies is projected to be deployed in the 

scenarios in order to substitute fossil energy and fossil-based chemicals. The 

biomass conversion technologies in the scenarios differ on biomass feedstock types 

(availability of non-EU biomass in the international scenarios), technological 

development and availability. In all scenarios, wet organic waste and solid organic 

waste are assumed to be used for electricity generation by anaerobic digestion and 

incineration respectively.

The LowTech scenarios include technologies that are already used on a commercial 

scale. For electricity generation, biomass is assumed to be co-fired in PC plants, 

biopetrol and biodiesel are assumed to be produced from fermentation of sugar and 

starch crops and transesterification of oil and fat residues and vegetable oils 

respectively. In the NatLowTech scenario, biodiesel and biopetrol are assumed to be 

made from EU rapeseed and EU starch respectively. In the IntLowTech scenario, 

imported sugar-cane-derived ethanol is assumed to be used for transport fuels and 

for ethylene production via ethanol dehydration. Imported palm oil and jatropha oil 

are the major feedstock for biodiesel production in this scenario. 

In the HighTech scenarios, advanced conversion options are assumed to be 

commercially available from 2010 onwards. Included are ethanol production from 

lignocellulosic biomass and synthesis gas production from biomass gasification. 

Synthesis gas is used for electricity generation (co-combustion in gas turbine 

combined cycle plants), biodiesel production via Fischer-Tropsch synthesis and for 

substitution of fossil-based synthesis gas in the chemical industry. The latter option 

is only assumed to be available in the IntHighTech scenario. In the NatHighTech 

scenario, bio-based caprolactam, a precursor for the production of nylon-6 is 

assumed to substitute fossil-based caprolactam from 2020 onwards. Please note 

that, although 100% of caprolactam was assumed to be replaced by biomass, the 

total share of bio-based production in the chemical industry will remain limited 

due to the production share of caprolactam in the chemical industry. In reality, a 

variety of chemicals will be substituted by biomass instead of substitution of one 

single product completely, as assumed in the scenarios. Different from the 

IntHighTech scenario, the IntHighTech AC scenario includes all three chemical 
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representative routes in order to substitute 25% of fossil raw materials in the 

chemical industry, as targeted by the PGG.

The bottom-up model is a simple Excel spreadsheet model with exogenous inputs of 

final energy demand from existing scenarios, a detailed technology dataset for 

bioenergy and bio-based materials and scenario-dependent assumption on the use 

of biomass by these different technologies. Scenarios include cost estimates and 

supply potentials for fossil-based and bio-based energy carriers. 

2.1.1 Input data 

The baseline situation includes a detailed assessment of current biomass use for 

bioenergy. It was not feasible to quantify the current use of biomass for bio-based 

chemicals as these statistics are not reported. The baseline situation also includes 

information on the structure of the electricity sector (vintage). This data is used to 

model the replacement rate of retired capacities in the electricity generation sector.

Projections of final energy demand for electricity, transport fuels and chemicals 

are used to estimate the demand for primary fossil energy carriers and the 

substitution potential of biomass. The bottom-up projections include final energy 

demand projections from the WLO scenarios [Janssen, Okker et al., 2006]. The final 

energy demands in the LEITAP projections are modelled endogenously. 

The technology database includes the technology characterisation and aggregation 

per sector and commodity. A selection of representative technologies was made for 

the current situation and for the various scenarios until 2030 (see part I for a more 

detailed description). This implies that technologies were also considered that are 

not yet commercialised. Data on cost and performance of these technologies was 

collected from bottom-up engineering studies. Future projections of cost were made 

using economies of scale, technological learning and innovation factors. The Excel 

model includes a detailed database of these technologies, but in order to assess the 

results for the data calibration process with the production functions in the top-

down model, the technologies in this study are aggregated to single commodity 

options.  

For the bottom-up estimations of cost and supply of biomass in the scenarios, 

existing studies were used that estimate the cost and supply relations for biomass 

energy crops produced in the EU27+ region [Wit et al., 2007] and the global supply 

potential [Hoogwijk et al., 2005]. Furthermore, domestic supply of primary, 

secondary and tertiary residues are taken into account. The projected supply of 

residues are based on PGG publications [Rabou et al., 2006; Kip et al., 2007] and 

[Koppejan et al., 2005]. For evaluation, the results are compared with the cost and 

supply of biomass that result from the top-down model outcomes.

2.1.2 Bottom-up biomass blending shares and model interaction

The amount of fossil energy that can be substituted by biomass depends mainly on 

cost and supply of biomass and the techno-economic performance of biomass 
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conversion technologies. The blending targets, i.e. the fossil energy fractions of 

fossil resources that can be replaced by biomass, are different per scenario and are 

based on policy objectives and the performance on technologies in the different 

scenarios. 

Table 1  Blending shares of biomass per scenario and sector (energy basis)

NatLowTech IntLowTech NatHighTech IntHighTech IntHighTech AC

Electricity (% energy output)

2010 4% 4% 5% 5% 5%

2020 6% 5% 9% 24% 20%

2030 7% 6% 9% 29% 21%

Transport fuels (% energy output)

2010 5.75% 5.75% 5.75% 5.75% 5.75%

2020 10% 10% 10% 25% 25%

2030 10% 20% 20% 60% 60%

bio-based chemicals (% energy for raw materials in the chemical industry)

 Bulka Specialtya Bulkb Specialty Bulk Specialtyc Bulkd Specialtyd Bulke Specialtyf

2010 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

2020 N/A N/A 4% N/A N/A 4% 9% 9% 13% 13%

2030 N/A N/A 7% N/A N/A 7% 19% 19% 25% 25%

a) No bio-based chemicals in the NatLowTech scenario
b)  Bio-based production of bulk C2 chemicals, based on 10% and 20% replacement of fossil based ethylene by bio-based 

ethylene in 2020 and 2030 respectively.
c)  Bio-based production of specialty chemicals, based on 50% and 100% replacement of fossil based caprolactam by bio-

based caprolactam in 2020 and 2030 respectively.
d)  Bio-based production of synthesis gas, replaces fossil based synthesis gas used for bulk and specialty chemicals. Note 

that the division between synthesis gas use for bulk and specialty chemicals is similar to the total use of fossil energy for 
chemicals (80% and 20%).

e)  Bulk C1 and C2 chemicals, based on bio-based ethylene (25% substitution of petroleum products in 2030) and bio-based 
synthesis gas (30% substitution of natural gas in 2030). 

f)  Bio-based production of specialty chemicals, based on caprolactam (25% substitution of petroleum products in 2030) and 
synthesis gas (30% substitution of natural gas in 2030).

For electricity generation, the share of biomass was estimated by taking into 

account the structure of the Dutch electricity sector. In the LowTech scenarios, 

retired PC plants and new required capacities are met by new PC plants with a 

higher biomass co-firing share (20%). In the HighTech scenario, retired PC and 

NGCC plants and new required capacities are met by NGCC plants with NGCC 

plants with co-gasification of biomass. Blending shares of biomass for transport 

fuels in the IntLowTech and NatHighTech scenario were based on the EU 2003 

directive on biofuels. The blending share of biomass in the NatLowTech scenario 

was assumed to be more conservative as of limited biomass sources and low 

production efficiencies. The shares in the IntHighTech scenario were based on the 

PGG targets for biomass in the transport sector including global biomass resources 

and high production efficiencies. In this study shares for biomass in the chemical 

industry were assumed to substitute one fossil-based chemical product per 

scenario. The IntLowTech scenario includes bio-based ethylene, the NatHighTech 

scenario includes bio-based caprolactam and the IntHighTech scenario includes 

bio-based synthesis gas. Please note that, although 100% of caprolactam was 

assumed to be replaced by biomass, the total share of bio-based production in the 
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chemical industry will remain limited due to the production share of caprolactam 

in the chemical industry. In reality, a variety of chemicals will be substituted by 

biomass instead of substitution of one single product completely, as assumed in the 

scenarios. The IntHighTech AC includes all three chemical representative routes in 

order to substitute 25% of fossil raw materials in the chemical industry as targeted 

by the PGG.

2.2 Modelling approach under the Macro-economic Model LEITAP

2.2.1 The GTAP-E model

The methodological improvements of standard economic model such as the 

standard GTAP model are crucial for an economic modelling of biomass demand in 

the bio-based industries. The starting point for the analysis here was the standard 

version of the general equilibrium model GTAP which has been extended for energy 

and biomass markets necessary to model biomass demand.3 An important aspect for 

this study is related to the question, how the shift in technologies in the bio-based 

industries is implemented for the different scenarios described in part I of the 

study. The main difference between the scenarios are the degree of openness of the 

economy, i.e. National versus International scenarios, and  the shift from Low to 

High technologies.

The implementation of biofuels builds on a modified version of the GTAP multi-

sector multi-region CGE model [Hertel, 1997]. This multi-region model allows the 

capture of inter-country effects, since the enhanced biofuel use influences demand 

and supply, and therefore prices on world markets and hence will affect trade flows, 

production, and GDP. The multi-sector dimension enables to study the link between 

energy, transport, and agricultural markets. The model is extended through the 

introduction of energy substitution into production by allowing energy and capital 

to be either substitutes or complements (GTAP-E; Burniaux and Truong, 2002). 

Compared to the standard presentation of production technology, the GTAP-E model 

aggregates all energy-related inputs for the petrol sector – such as crude oil, gas, 

electricity, coal, and petrol products – in the nested structure under the value added 

side. At the highest level the energy-related inputs and the capital inputs are 

modelled as an aggregated ‘capital-energy’ composite (Figure 3, left panel).4

To introduce the demand for biofuels, the nested constant elasticity of substitution 

(CES) function of the GTAP-E model has been adjusted and extended to model the 

substitution between different categories of oil (oil from biofuel crops and crude 

oil), ethanol, and petroleum products in the value added nest of the petroleum 

sector. The model presents the fuel production at the level of non-coal inputs 

3	 For	further	information	and	an	application	of	the	extended	LEITAP	model	see	also	Banse	et	al.	

[2008].

4	 The	underlying	technologies	for	the	other	bio-based	sectors	are	outlined	and	discussed	in	part	II	of	

the	study.
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differently compared to the approach applied under the GTAP-E model (Figure 3, 

right panel). The non-coal aggregate is modelled in the following way: 1) the non-

coal aggregate consists of two sub-aggregates, fuel and gas; 2) fuel combines 

vegetable oil, oil, petroleum products, and ethanol; and 3) ethanol is made out of 

sugar beet/sugar cane and cereals.5

This approach models an energy sector where industry’s demand of intermediates 

strongly depends on the cross-price relation of fossil energy and biofuel-based 

energy. Therefore, the output prices of the petrol industry will be, among other 

things, a function of fossil energy and bio-energy prices. 

Figure 3 Nesting structure in energy modeling for liquid petrol.
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of fuel. A higher share implies a lower elasticity and a larger impact on the oil 
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are crucial. These represent the degree of substitutability between crude oil and 

biofuel crops. The values of the elasticity of substitution are taken from Birur et al., 

(2007), who – based on a historical simulation of the period 2001 to 2006 – obtained 

a value of the elasticity of substitution of 3.0 for the US, 2.75 for the EU, and 1.0 for 

Brazil. This technological tree determines the possibility in a given sector to 

5	 Ethanol	is	not	modelled	as	a	product	for	final	demand	but	only	as	an	aggregated	composite	input	in	

the	petrol	industry.
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substitute for different production factors (labour, capital, land and natural 

resources) and energy inputs. Apart from the aforementioned elasticities of 

substitution between these individual inputs or aggregates of inputs, the initial cost 

shares play an important role in the demand for energy inputs or production 

factors. If a sector has only a small initial cost share, even strong shifts in relative 

price will not cause drastic shifts in the composition of intermediate inputs. As an 

example, if the initial share of bio-based inputs in a sector is relatively small it will 

also remain small, even under strong shifts between fossil and bio-based input 

prices.6

In addition, prices for outputs of the petroleum industry will depend on any 

subsidies/tax exemptions affecting the price ratio between fossil energy and 

bioenergy. Finally, and most important for current bioenergy policies, the level of 

demand for bio-based output will be determined by any enforcement of national 

targets through, for example, mandatory inclusion rates or the provision of input 

subsidies to the bio-based industries. 

In this study biomass policies are modelled as mandatory blending obligations 

fixing the share of bio-based inputs in transport fuel, natural gas, electricity and 

chemicals. It should be mentioned that this mandatory blending is budget neutral 

from a government point of view. To achieve this in a CGE model two policies were 

implemented. First, the share of biomass inputs in the bio-based industries are 

specified and made exogenous such that it can be set at a certain target. An input 

specific subsidy on biomass is specified endogenously to achieve the necessary 

biomass share. The input subsidy is needed to change the relative price ratio 

between biomass and fossil energy inputs. If the bioenergy share is lower than the 

target, a specific subsidy on biomass inputs is introduced to make them more 

competitive. Second, to implement this incentive instrument as a ‘budget-neutral’ 

instrument, it is counter-financed by an end-user tax on consumption of output 

from bio-based sectors. The end-user taxes on bio-based products are made 

endogenous to generate the necessary budget to finance the subsidy on biomass 

inputs necessary to fulfil the mandatory blending. Due to the end-user tax, 

consumers pay for the mandatory blending as end-user prices of blended petrol, 

electricity, gas or chemicals increase. The higher price results from the use of more 

expensive biomass inputs relative to fossil energy inputs in the production of bio-

based products. 

2.2.2 Assumptions for different scenarios

One of the main goals of this study is to show the consequences of different degrees 

of biomass use in the Dutch economy, under alternative technology assumptions and 

different degree of openness. The macro-economic model has to be adjusted to 

represent these differences between the scenarios.

6	 This	feature	of	the	macro-economic	model	applied	for	this	study	will	be	discussed	further	below.	

The	initial	data	base	and	the	adjustments	we	applied	to	it	are	outlined	in	part	II	of	the	report.
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In terms of openness, we vary the trade elasticities (Armington elasticities) which 

determine the degree that domestic producers/consumers react to changes in the 

ratio of domestic and international prices. Under the ‘National’ scenarios we apply 

lower values while under the ‘International’ scenarios the level are doubled 

compared with those applied for the ‘National’ scenarios. The higher trade 

elasticities under the ‘International’ scenario will lead to a stronger increase in 

imports if domestic demand expands. 

Alternative technologies (LowTech vs. HighTech): The main difference between the 

HighTech and the LowTech scenarios is the different degree of the substitutability 

between biomass and fossil inputs in the bio-based industries. We assume that 

under the LowTech scenario production of the bio-based industries is mainly based 

on current (1st-generation biomass) technologies, while under HighTech scenarios 

the use of 1st-generation biomass is mainly substituted by 2nd-generation biomass. 

Therefore, we assume that under the LowTech scenarios mainly 1st-generation 

biofuels than can be substituted with fossil fuels based on a technology with 

relatively low efficiency of biomass conversion which is a consequence of low 

elasticities of substitution between biomass and fossil inputs, and the assumption 

of ‘neutral’ technical progress. However, especially under the LowTech scenarios, 

the efficiency of biomass conversion is assumed to be low, which leads to a relative 

low elasticity between fossil and biomass energy inputs and consequently also to 

low cost shares of biomass inputs in the bio-based industries.

Apart from the assumption of the higher degree of substitutability of biomass with 

fossil inputs under the HighTech scenario we also assume that the conversion 

efficiency is higher compared with the LowTech scenarios. This is implemented in 

the macro-economic model by different assumptions on the rate of input 

augmenting technical progress. Under the LowTech scenario we assume that the 

technical progress is ‘neutral’ without affecting the composition of intermediate 

demand in different sectors. A graphical presentation is given in the following 

Figure 4. In the initial situation a bio-based industry produces the output Q1 

(illustrated by the isoquant Q1) with a mix of fossil and biomass inputs of v1 and r1, 

respectively. The quantity of demanded inputs is determined by the price ratio of 

fossil and biomass input, p.
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Figure 4  Technical Progress in the Bio-based Industry under LowTech Scenarios
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initial situation of production level Q1 with v1 and r1 as the input quantities 

demanded, technological growth is now input-saving for biomass inputs, i.e. a 

higher conversion rate for biomass inputs in the bio-based economy. Under Q2 the 

optimal input combination is v2 and r2, but the ratio between both types of inputs 

altered. The expansion path A of this industry is now a non-linear path 0A. 

Figure 5  Technical Progress in the Bio-based Industry under HighTech Scenarios

 

 13 

Under the assumption that p remains constant, technological progress will shift the 
isoqant Q1 to Q2 with a new a mix of fossil and biomass inputs at v2 and r2. The 
assumption of neutral technological progress is described by a linear ‘expansion path’ of 
this industry as the straight line 0A. Therefore, under these assumptions, technical 
progress in bio-based production will not affect the mix of biomass and fossil inputs.  
 
Under the HighTech scenarios this assumption is dropped, and technical progress is input 
saving for biomass inputs in the bio-based sectors. Starting for the same initial situation 
of production level Q1 with v1 and r1 as the input quantities demanded, technological 
growth is now input-saving for biomass inputs, i.e. a higher conversion rate for biomass 
inputs in the bio-based economy. Under Q2 the optimal input combination is v2 and r2, 
but the ratio between both types of inputs altered. The expansion path A of this industry 
is now a non-linear path 0A.  
 

  

Figure 5 Technical Progress in the Bio-based Industry under HighTech Scenarios. 

 
To identify the effect of an enhanced use of biomass inputs we also run all four scenarios 
without a mandatory blending obligation for biomass use in the bio-based industries, i.e. 
petrochemicals, electricity and chemicals. It should be mentioned that even without a 
mandatory blending the use of biomass inputs changes due to changes in relative prices 
(biomass crops vs. fossil fuel). Especially in the HighTech scenarios it can be assumed 
that the required subsidies for the biomass use will strongly decline due to the high 
technological progress we assume for these scenarios.  
 

Q2 

Fossil inputs 

   0                    r1  r2                              Biomass inputs 

A 

Q1 

v2 

v1 

p 

p 

To identify the effect of an enhanced use of biomass inputs we also run all four 

scenarios without a mandatory blending obligation for biomass use in the bio-based 

industries, i.e. petrochemicals, electricity and chemicals. It should be mentioned 



22  Macro-econoMics biobased synthesis report analysis of the econoMic iMpact of large-scale deployMent of bioMass resources for energy and Materials in the netherlands   23

that even without a mandatory blending the use of biomass inputs changes due to 

changes in relative prices (biomass crops vs. fossil fuel). Especially in the HighTech 

scenarios it can be assumed that the required subsidies for the biomass use will 

strongly decline due to the high technological progress we assume for these scenarios. 

2.3 Integration of the LEITAP projections into the bottom-up model

The results of the bottom-up study, as in the bottom-up reports, includes projections 

of energy demand and growth in the chemical industry sectors based on the WLO 

scenarios as displayed in Figure 1. For this report, the projection results of the top-

down LEITAP are translated into physical input parameters for the bottom-up 

model. This section describes how the data is translated from monetary outputs of 

the LEITAP model to physical input parameters. The results of the synthesis of both 

models are presented in section 3. 

2.3.1 Transport fuels

Figure 6  Biofuels in the bottom-up scenarios (left bars) and the top-down scenarios (right bars)
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Figure 6 Biofuels in the bottom-up scenarios (left bars) and 

the top-down scenarios (right bars). 

Figure 6 displays the projections of biofuel per feedstock type. The bars on the right 

summarise the results of the LEITAP projections, the bars on the left summarise 

the results of the bottom-up projections based on the WLO scenarios. There are two 

important differences between these projections. The results of the HighTech 

scenarios of the bottom-up study, only include transport fuels from lignocellulosic 

feedstock whereas the LEITAP projections still include a large share of oil crops and 

some sugar and starch crops. Furthermore, the total production of biofuels in the 

LowTech scenarios and the NatHighTech scenarios is 14-35% higher in the LEITAP 

projections as a result of the higher demand for transport fuels relative to the WLO 

projections used for the bottom-up results. For this report, both the final demand as 

the shares of crop types of the LEITAP results are integrated in the bottom-up 
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model. All sugar crops are assumed to be sugar cane, while the ratio for ethanol and 

FT-diesel from woody biomass is assumed to be similar to the initial bottom-up 

projections.

2.3.2 Electricity

Figure 7 presents the results of the bottom-up and LEITAP projections for 

electricity generation. Note that the results of the LEITAP projections are translated 

into physical units to make the results comparable. The replacement of retired 

existing capacities is assumed to be similar to the bottom-up scenarios (section 3.2 

of the bottom-up report). The final demand is based on projections of the LEITAP 

model and, apart from the NatLowTech scenario, is lower than the WLO projections, 

which are used for the bottom-up results. Also co-production of electricity is 

slightly lower in the top-down projections as these scenarios include more 1st-

generation technologies for biofuel production without co-generation of electricity 

(Figure 6).

Figure 7   Electricity generation in the bottom-up scenarios (left bars)  

and the top-down scenarios (right bars)

 15 

these scenarios include more 1st generation technologies for biofuel production without 
co-generation of electricity (Figure 6). 
 

-30

20

70

120

170

220

N
a

tL
o

w
T

e
c
h

In
tL

o
w

T
e

c
h

N
a
tH

ig
h
T

e
c
h

In
tH

ig
h
T

e
ch

In
tH

ig
h
T

e
ch

A
C

T
W
h

Co-gen. fuel/chem. prod.

Biomass co-gasif ication

Gas new

Gas (old)

Biomass co-f iring

Coal (new )

Coal (old)

Decentral (gas CHP)

Other renew ables

Biomass digestion

MSW incineration

Nuclear

Import/export

TD-projections

BU-projections

 

Figure 7 Electricity generation in the bottom-up scenarios (left bars) and the top-down scenarios 

(right bars). 

2.3.3 Chemicals 

For chemicals, the projected growth of the chemical industries is used to estimate the 
demand for energy and biomass in the scenarios.  Figure 8 shows the size of the chemical 
industries as projected using the WLO-scenarios (left bars) and the LEITAP projections 
(right bars). The variation between the scenarios is much larger for the WLO-based 
bottom-up scenarios than the LEITAP projections. This is mainly the result of efficiency 
improvements in the high-tech scenarios and different socio-economic assumptions7. 

                                                
7 GDP and population growth are equal for all LEITAP scenario projections. In the WLO-scenarios, these 

parameters vary significantly over the four WLO-scenarios.  
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Figure 8   Final energy demand of the chemical industry sectors in the bottom-up (left bars) and top-

down (right bars) scenarios

 16 

-100

100

300

500

700

900

1100

1300

1500

In
tL

o
w

T
e

c
h

N
a
tH

ig
h
T

e
c
h

In
tH

ig
h
T

e
c
h

In
tH

ig
h
T

e
c
h

A
C

F
in

a
l 

e
n

e
rg

y
 (

P
J

) Replaced by biomass

Natural gas

Petroleum products

Electricity

Others

TD-projections

BU-projections

 

Figure 8 Final energy demand of the chemical industry sectors in the bottom-up (left bars) and top-

down (right bars) scenarios. 

The projections of the LEITAP model for biofuels, electricity generation and chemicals 
(Figure 6 through Figure 9) are integrated in the bottom-up model to generate the results 
of section 3. The initial results, based on the WLO-projections, are also included for 
reason of comparison. 
In general, the projections of energy demand in the LEITAP results are higher for the 
NatLowTech scenario and lower for the other scenarios. This is in particular true for 
electricity demand and energy demand in the chemical industries of the IntHighTech 
scenarios. The total demand for bioenergy and the total amount of fossil energy and 
GHGs avoided is therefore in the IntHighTech scenarios as covered in the section 3. 

The projections of the LEITAP model for biofuels, electricity generation and 

chemicals (Figure 6 through Figure 9) are integrated into the bottom-up model to 

generate the results of section 3. The initial results, based on the WLO projections, 

are also included for comparison.

In general, the projections for energy demand in the LEITAP results are higher for 

the NatLowTech scenario and lower for the other scenarios. This is particularly 

true for electricity demand and energy demand in the chemical industries of the 

IntHighTech scenarios. The total demand for bioenergy and the total amount of 

fossil energy and GHGs avoided is therefore in the IntHighTech scenarios as 

covered in section 3.
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3  results of the bottoM-up projections 
(part i)
This section presents the results of the bottom-up model which are based on both 

the WLO scenarios and on the output of the LEITAP model for 2030. The bottom-up 

report includes a detailed discussion of the results with the WLO projections for 

2010 and 2020.

The bio-based production of electricity, transport fuels and chemicals ranges from 

74 PJ in the NatLowTech scenario to 680 PJ in the IntHighTech scenario (Figure 9). 

Although production of bio-based chemicals is higher in the IntHighTech AC 

scenario, the total bio-based production is lower in this scenario as a result of the 

lower share of bio-based synthesis gas and related co-production of electricity. The 

total avoided primary energy is therefore also 10% lower in the IntHighTech AC 

scenario than in the IntHighTech scenario (Figure 14). The results of the LEITAP 

projections (Figure 10) are higher for the NatLowTech scenarios because of the 

higher demand for electricity (Figure 7) and related co-firing of biomass in this 

scenario. The total production of bio-based electricity is lower in the IntHighTech 

scenarios of the LEITAP projections because for these scenarios it is assumed that 

1st-generation technologies are still used for the production of biofuels (Figure 6). 

Figure 9 Bioenergy and bio-based chemicals  Figure 10 Bioenergy and bio-based chemicals 

in the scenarios in 2030, WLO projections in the scenarios in 2030, LEITAP projections
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synthesis gas and related co-production of electricity. The total avoided primary energy is 
therefore also 10% lower in the IntHighTech AC scenario than in the IntHighTech 
scenario (Figure 14 ). The results of the LEITAP-projections (Figure 10) are higher for 
the NatLowTech scenarios because of the higher demand for electricity (Figure 7) and 
related co-firing of biomass in this scenario. The total production of biobased electricity 
is lower in the IntHighTech scenarios of the LEITAP projections because for these 
scenarios it is assumed that 1st generation technologies are still used for the production of 
bioduels (Figure 6).  
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Figure 9 Bioenergy and biobased chemicals in the 

scenarios in 2030, WLO-projections. 
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Figure 10 Bioenergy and biobased chemicals in the 

scenarios in 2030, LEITAP-projections. 
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Figure 11 Required biomass from residues and  Figure 12 Required biomass from residues and

energy crops per sector in 2030, WLO projections energy crops per sector in 2030, LEITAP projections
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The required biomass for bioenergy and biobased materials in the NatLowTech scenario 
can almost entirely be met by domestic residues. For the production of biofuels, energy 
crops are required as 1st generation technologies in this scenario limit the use of residues 
for biofuels to fat and oil residues. In the IntLowTech scenario, a 10% higher blending 
share for biofuels and the production of biobased chemicals (bulk C2) increases the 
required biomass to almost 300 PJ. Although blending shares for biofuels are similar in 
the IntLowTech and the NatHighTech scenario, the lower conversion efficiency of FT-
diesel in the IntHighTech scenario relative to biodiesel form vegetable oil in the 
IntLowTech scenario explains the higher demand for biomass in the NatHighTech 
scenario. The difference between the two IntHighTech scenarios is limited. For the 
IntHighTech AC scenario, more biomass is required to produce biobased chemicals 
(Figure 11). The result of the projections based on the LEITAP-scenarios (Figure 12) 
indicates that less biomass is required for the HighTech scenarios. Biodiesel from 
vegetable oil requires less biomass in terms of energy than biofuel from lignocellulosic 
biomass. Part of the higher demand for lignocellulosic biomass is compensated by co-
production of electricity which is higher in the results of the WLO based bottom-up 
projections. 
 
The Greenhouse gas (GHG) emission reduction by substituting fossil energy by biomass 
ranges from 8 Mton CO2 eq. in 2030 for the NatLowTech scenario to 56 Mton CO2 eq. in 
the IntLowTech scenario The total avoided GHG emissions in the IntLowTech scenario 
and NatHighTech scenario were almost identical (Figure 15). Although advanced 
biodiesel production (FT-synthesis) improved the mitigation potential of transport fuels, 
there was little difference in the GHG mitigation performance of ethanol from sugar cane 
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Figure 11 Required biomass from residues and 

energy crops per sector in 2030, WLO-projections. 
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Figure 12 Required biomass from residues and 

energy crops per sector in 2030, LEITAP-

projections 

     

The required biomass for bioenergy and bio-based materials in the NatLowTech 

scenario can almost entirely be met by domestic residues. For the production of 

biofuels, energy crops are required as 1st-generation technologies in this scenario 

limit the use of residues for biofuels to fat and oil residues. In the IntLowTech 

scenario, a 10% higher blending share for biofuels and the production of bio-based 

chemicals (bulk C2) increases the required biomass to almost 300 PJ. Although 

blending shares for biofuels are similar in the IntLowTech and the NatHighTech 

scenario, the lower conversion efficiency of FT-diesel in the IntHighTech scenario 

relative to biodiesel from vegetable oil in the IntLowTech scenario explains the 

higher demand for biomass in the NatHighTech scenario. The difference between 

the two IntHighTech scenarios is limited. For the IntHighTech AC scenario, more 

biomass is required to produce bio-based chemicals (Figure 11). The result of the 

projections based on the LEITAP-scenarios (Figure 12) indicates that less biomass is 

required for the HighTech scenarios. Biodiesel from vegetable oil requires less 

biomass in terms of energy than biofuel from lignocellulosic biomass. Part of the 

higher demand for lignocellulosic biomass is compensated by co-production of 

electricity which is higher in the results of the WLO-based bottom-up projections.

The greenhouse gas (GHG) emission reduction due to substituting fossil energy with 

biomass ranges from 8 Mton CO2
 eq. in 2030 for the NatLowTech scenario to 56 

Mton CO
2
 eq. in the IntLowTech scenario. The total avoided GHG emissions in the 

IntLowTech scenario and NatHighTech scenario were almost identical (Figure 15). 

Although advanced biodiesel production (FT synthesis) improved the mitigation 

potential of transport fuels, there was little difference in the GHG mitigation 

performance of ethanol from sugar cane and lignocellulosic biomass8. Despite the 

use of more efficient electricity generation technologies (co-gasification), the 

8	 It	should	be	noted	though	that	the	effect	of	indirect	land	use	change	was	not	taken	into	account.	
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difference in GHG emissions avoided for the IntLowTech and NatHighTech scenario 

was limited because biomass replaced mainly carbon-intensive coal in the low-tech 

scenarios, while for the high-tech scenarios, relatively clean gas technologies were 

assumed to be replaced by biomass. The projections, based on the LEITAP results 

show a difference of ~10 Mton for CO
2
 mitigation in 2030 (Figure 14) as a result of 

the lower demand for electricity, but mainly due to the moderate environmental 

performance of biodiesel from vegetable oil still used on a large scale in these 

scenarios. 

Figure 13 Avoided non-renewable primary energy  Figure 14 Avoided non-renewable primary energy 

by biomass in the scenarios in 2030, WLO projections by biomass in the scenarios in 2030, LEITAP 

      projections
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Figure 13 Avoided non-renewable primary energy 

by biomass in the scenarios in 2030, WLO- 

projections. 
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Figure 14 Avoided non-renewable primary energy 

by biomass in the scenarios in 2030, LEITAP- 

projections. 
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Figure 15 GHG emissions avoided per scenario in 

2030, WLO-projections. 

44 Mton

15 Mton

10 Mton

46 Mton

13 Mton

0

5

10

15

20

25

N
at

Lo
w
Tec

h

In
tL

ow
Tec

h

N
at
H
ig
hT

ec
h

In
tH

ig
hT

ec
h

In
tH

ig
hT

ec
h 
AC

G
H

G
 m

it
ig

a
ti

o
n

 (
M

to
n

 C
O

2
 e

q
.)

 

Figure 16 GHG emissions avoided per scenario in 

2030, LEITAP-projections. 
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projections. 
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Figure 14 Avoided non-renewable primary energy 

by biomass in the scenarios in 2030, LEITAP- 

projections. 
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2030, WLO-projections. 
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Figure 16 GHG emissions avoided per scenario in 

2030, LEITAP-projections. 

 

     

The total expenditures for bioenergy and bio-based chemicals range from 1,073 M€ 

in the NatLowTech scenario to 9,655 M€ in the IntHighTech AC scenario in 2030. 

Costs for biofuel production from vegetable oil and sugar/starch crops are 

dominated by feedstock cost as, especially for biodiesel from vegetable oil, few 
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conversion processes are required to produce biodiesel. The additional costs for 

substitution of fossil fuels with biomass depend on the difference between the fossil 

reference9 technologies and the biomass substitutes and ranged from 300 M€ in the 

NatLowTech scenario to 2,731 M€ in the IntHighTech scenario (Figure 17). Figure 19 

shows the additional cost projections based on the LEITAP scenarios. These are 

over 1000 M€ lower than in the bottom-up projections based on the WLO projections 

as a result of 1st-generation biofuels that are still used on a large scale in these 

projections. The additional costs for bio-based production are lower in the 

IntHighTech AC scenario than in the IntHighTech scenario because production 

costs of both bio-based specialty chemicals (such as bulk C2 chemicals) are closer 

to, or even lower than, the fossil-based variant than bio-based synthesis gas. It 

should be noted that the additional costs are sensitive to fossil fuel prices. If fossil 

fuel prices (crude oil, coal and natural gas) increase by 50%, biomass is already 

competitive in the international scenarios, and limited additional costs are made 

for the production of electricity and FT-diesel (Figure 18). It should be noted, 

however, that the bottom-up model is limited in reflecting higher fossil fuel prices. 

The model does not include cost escalations for higher fossil energy prices that also 

result, for example, in  increased costs of energy crop production and capital costs 

of bioenergy technologies that are also linked to fossil fuel prices. The projections 

in Figure 18 might therefore be too optimistic. 

Figure 17 Additional cost for bio-based substitution Figure 18 Additional cost for bio-based substitution

in the scenarios in 2030. in the scenarios in 2030.

Oil price = 50 US$/bbl, coal = 2€/GJ,  Oil price = 75 US$/bbl, coal = 3€/GJ, 

natural gas = 6€/GJ, WLO-projections  natural gas = 9€/GJ, WLO-projections
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biomass depend on the difference between the fossil reference9 technologies and the 
biomass substitutes and ranged from 300 M€ in the NatLowTech scenario to 2,731 M€ in 
the IntHighTech scenario (Figure 17). Figure 19 shows the additional cost projections 
based on the LEITAP scenarios. These are over 1000 M€ lower than in the bottom-up 
projections based on the WLO-projections as a result of 1st generation biofuels that are 
still used on large scale in these projections. The additional cost for biobased production 
are lower in the IntHighTech AC scenario than in the IntHighTech scenario because 
production cost of both biobased specialty chemicals as bulk C2 chemicals are closer to 
or even lower than the fossil based variant than biobased synthesis gas. It should be noted 
that the additional cost are sensitive to fossil fuel prices. If fossil fuel prices (crude oil, 
coal and natural gas) increase with 50%, biomass is already competitive in the 
International scenarios and limited additional costs are made for the production of 
electricity and FT-diesel (Figure 18). It should be noted however that the bottom-up 
model is limited in reflecting higher fossil fuel prices. The model does not include cost 
escalations for higher fossil energy prices that also result in e.g. increased cost of energy 
crop production and capital costs of bioenergy technologies that are also linked to fossil 
fuel prices. The projections in Figure 18 might therefore be too optimistic.  
 

 

                                                
9 Oil price = 50 US$2006/bbl, Natural gas price = 6 €/GJ and coal price = 2 €/GJ.  
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Figure 17 Additional cost for biobased substitution 

in the scenarios in 2030. Oil price = 50 US$/bbl, coal 

= 2 €/GJ, natural gas = 6 €/GJ, WLO-projections. 
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Figure 18 Additional cost for biobased substitution 

in the scenarios in 2030. Oil price = 75 US$/bbl, 

coal = 3 €/GJ, natural gas = 9 €/GJ, WLO-

projections. 

     

GHG mitigation costs differ per scenario as a result of different biomass conversion 

technologies used and their techno-economic performance. Mitigation costs, with 

fossil fuel prices as in Figure 17, are estimated to be 19 €/tonne CO
2
 eq. in 2006 and 

increase to 35 €/tonne CO
2
 eq. in the NatLowTech scenario in 2030. This increase is 

mainly the result of the poor mitigation performance of biodiesel from rapeseed and 

9	 Oil	price	=	50	US$2006/bbl,	Natural	gas	price	=	6	€/GJ	and	coal	price	=	2	€/GJ.	
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starch crops. Lower feedstock prices and better GHG mitigation performances of 

biodiesel from palm oil and jatropha oil and ethanol from sugar cane result in 

mitigation cost of 21 €/tonne CO
2
 eq. in the IntLowTech scenario in 2030. The 

mitigation costs are highest in the high-tech scenarios, with 46 €/tonne CO
2
 eq. for 

the NatHighTech and IntHighTech AC scenarios and 49 €/tonne CO
2 
e for the 

IntHighTech scenario. The main reasons for the higher mitigation costs in the high-

tech scenarios are better environmental performances of the reference technologies 

for electricity generation10 and the use of advanced and capital intensive conversion 

technologies. 

The results based on the LEITAP projections (Figure 19 and Figure 20) already 

indicate that, if optimised for costs, biodiesel production from palm oil or jatropha 

and imported ethanol from sugar cane from Brazil is cheaper than the production of 

FT-diesel and ethanol from lignocellulosic biomass. The mitigation costs of the 

LEITAP projections for 2030, based on an oil price of 50 US$/bbl, are estimated to 

be 50-52 €/tonne CO
2
 eq. in the NatLowTech and NatHighTech scenarios, 27 €/tonne 

CO
2
 eq. for the IntLowTech scenario and 36 – 38 €/tonne CO

2
 eq. for the IntHighTech 

scenarios. It should be noted, however, that the costs of vegetable oils, in particular, 

are sensitive to fluctuations in supply and demand which could increase costs 

again. 

10	 Biomass	co-gasified	in	NGCC	plants	replaces	natural	gas	with	relatively	low	GHG	emissions,		

while	biomass	replaces	carbon-intensive	coal	in	the	low-tech	scenarios.	
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4  results of the top-down projections 
(part ii)
The macro-economic analyses results cover impacts of the different bio-based 

scenarios on the Dutch trade balance, GDP, sectoral effects (in particular 

agriculture, energy and chemical), employment, all compared to the baseline 

development where only a low share of biomass use (mainly for energy) is included. 

To summarise, the following conclusions can be drawn from the results of the 

quantitative analysis:

All bio-based scenarios have a positive effect on the trade balance of the  –

Netherlands. In 2030 the net (positive) impact compared to the baseline 

developments simulated by LEITAP are about 2000 (LowTech scenario) to 4000 

(HighTech scenario) million € per year.

Imports of biomass (and biofuels, especially ethanol; depending on the scenario)  –

are substantial, varying between over 2600 million € (NatLowTech) up to 7400 

(IntHighTechAC) million € annually. South America,11 in particular, is a likely 

major supplier.

The production of biomass used in the Dutch bio-based economy varies in value  –

between some 180 Million € (IntLowTech) and almost 720 million € 

(IntHighTechAC). This is substantial, but also reflects the relatively modest role 

of national biomass resource production compared to imports.

In terms of employment generated, the share of employers working in the bio- –

based ‘part’ of the bio-based sectors (fuel, electricity and fine chemicals), the 

total employment in these three sectors remains relatively stable over the 

projected period, but the increasing share in employment in the ‘bio-based part’ 

indicates a growing importance of the bio-based economy for those sectors. The 

results show that, with a shift towards a bio-based economy, agricultural 

employment will continue to decline. However, a growing demand for biomass 

will slightly dampen this structural change in agriculture.

The macro-economic modelling results confirm the large shares of 1st-generation  –

biofuels for the LowTech scenarios as defined by the bottom-up approach. The 

use of lignocellulosic biomass (both for fuels and for biomaterials) covers over 

half the total demand for the HighTech scenarios in 2030. 

This result, different from the bottom-up scenarios, where this share is even  –

higher, is explained by the incorporation of continuous functions in the 

modelling framework that basically take into account the lifetime of 

investments and reasonable rates of change in production capacity over time.  

11	 An	important	difference	between	the	top-down	model	and	the	bottom-up	model	is	that	there	is	

no	absolute	restriction	for	the	NatLowTech	and	NatHighTech	scenarios	to	use	only	biomass	from	

EU27+	sources.	The	lower	trade	(Armington)	elasticities	in	the	national	scenarios	decrease	imports	

of	biomass.	Nevertheless,	there	will	still	be	trade	with	non-EU	countries.	Furthermore,	imported	

biomass	is	also	used	for	other	purposes	than	energy	or	chemicals	(e.g.	food	or	feed).
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With the base scenario assumptions, the share of lignocellulosic based  –

biomass applications would increase further after 2030 and overall costs 

would go down. Furthermore, this share is sensitive to the rate of 

technological progress (learning) of new technologies. A more conservative 

progress would lead to lower shares and vice versa. 

Required support levels to ensure the realisation of the projected shares of  –

biofuel shares in the different scenario’s differ strongly between the scenarios 

(following data are all versus a reference oil price of 75 U$/bbl (in 2006 US$):

The NatLowTech scenario requires (for a modest share of 10%) a subsidy of  –

about half a billion per year (and around 0.40 €/litres of biofuel). 

IntLowTech this is reduced to 350 million  – € annually and 0.12 €/litres of 

biofuel for a 20% share (especially due to cheaper imports such as ethanol). 

Costs increase again for the NatHighTech scenario (due to higher feedstock 

costs). 

IntHighTech achieves the 60% share of biofuels in 2030 with some 300  –

million € per year subsidies (and a low 0.034 €/litres biofuel subsidy). This 

subsidy is only required for the 1st-generation biofuel part and to some 

extent for 2nd-generation biodiesel; in this scenario competitive production 

costs are achieved for 2nd-generation ethanol production, given the 

technology assumptions and base oil price of 75U$/bbl. 

In addition to the IntHighTech scenario, the IntHighTechAC scenario  –

includes bio-based production of natural gas and petroleum products and in 

both the specialty and bulk chemical industries. Under the (extreme) high 

blending shares assumed under IntHighTechAC imports of biomass is 

projected to increase to more than 5 billion € with most of imports from 

South American countries. Additional income and employment under the 

IntHighTechAC scenario is mainly created in the petrol sector; while around 

¼ is generated in the in electricity and chemical sectors.

These results are highly sensitive to the oil price; with lower oil prices,  –

required support increases and vice versa. In addition, the scenarios assume 

a fixed (and high) diesel demand in the transport sector. When this could be 

replaced by 2nd-generation bioethanol or cheaper synfuels than Fischer-

Tropsch diesel (such as methanol or DME), costs would go down and be 

competitive at the 75 U$/barrel reference oil price. This implies, however, 

also more adjustments investments in the transport sector (e.g. engine 

adjustments, fuel distribution).

Shares of additional income across the bio-based industries in 2030 for the  –

IntHighTech Scenario) due to biomass expansion amount 19% for electricity 

production using biomass, 78.5% for production of biofuels and, 2.5% due to the 

production of the assumed biomass derived chemicals. 
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5 discussion 
This section covers the discussion of the results of the top-down and bottom-up 

projections and the used methodology to link these models. Part I and part II of this 

study discuss the individual results. The emphasis of this discussion section is on a 

comparison of the bottom-up and top-down results (5.1) and the methodology of 

linking the bottom-up with the top-down model and potential improvements that 

can be made to improve consistency between the models (5.2). 

5.1 Results

The results, presented in detail in part I and part II of this study, include a set of 

bottom-up and top-down projections of biomass for bioenergy and bio-based 

materials, the (macro) economic impact, the required resources and the avoided 

fossil energy and greenhouse gas emissions. The results of the bottom-up and top-

down projections are compared for biomass use, i.e. the total biomass required to 

generate bioenergy and bio-based chemicals, the produced bioenergy and bio-based 

materials and bio-based materials and the additional costs/benefits. Although the 

bottom-up and the top-down projections are generated for similar biomass blending 

targets, the difference in modelling approaches results in different outputs.

 

The top-down results are expressed as total expenditures or sales for inputs and 

outputs per sector (in M$ weighted indices). The mix of goods produced in sectors is 

aggregated to a total value. These can be disaggregated for the baseline year for 

which statistical data on physical quantities (e.g. kton, PJ) and technology 

portfolios are available. For top-down projections however, difficulties arise in 

disaggregating as both quantitative as qualitative changes are implicit to the total 

economic growth or decline in each sector. The translation of the bottom-up 

projections in monetary units back to physical quantities that are used for the 

bottom-up model is therefore partly based on the baseline situation for which both 

physical and economic data is available. The bottom-up results that are based on 

the LEITAP projections therefore still include data from the WLO scenarios (e.g. 

diesel/petrol ratio, electricity generation technologies) as these could not be derived 

from LEITAP. A further disaggregation of sector/commodities in the top-down 

model would improve the exchangeability of data between the bottom-up and top-

down models.

5.1.1 Biomass use in the models

Both the top-down and the bottom-up model include a range of similar biomass 

energy crops for bioenergy and bio-based materials. The main difference between 

the models is that the bottom-up model also includes a detailed set of residues from 

domestic sources. The bottom-up projections show that a significant share, ranging 

from 15% in the IntHighTech scenarios to almost 70% in the NatLowTech scenario, 

can be met by domestic residues as displayed in Figure 11. The integration of 

biomass options from (domestic) residues would decrease the demand for dedicated 

crop production resulting in lower bio-based production costs and required imports 
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of biomass for bioenergy and bio-based materials.  

The biomass required for the production of transport fuels as projected with the 

top-down model for 2030 ranges from 100 PJ in the NatLowTech scenario to around 

360 and 455 PJ for the IntHighTech and the IntHighTech AC scenario respectively 

(Figure 13 in report II). It should be noted, however, that part of the bio-based 

ethanol in the IntHighTech AC scenario substitutes naphtha for ethylene production 

rather than petrol for road transport. For the bottom-up projections, we projected 

the demand for transport fuel to be 910 PJ in the IntHighTech scenarios in 2030. 

The difference in demand can be explained by the use of 1st-generation conversion 

options in the top-down model, whereas all transport fuels are produced from 

lignocellulosic biomass, with lower conversion efficiencies, in the bottom-up 

projections (42% in the bottom-up scenarios) relative to biodiesel from vegetable oil 

(~100%). For the HighTech bottom-up scenarios, it was assumed that 2nd-generation 

biomass conversion technologies would substitute 1st-generation technologies from 

2010 onwards to achieve a 100% market share in 2030. Figure 12 shows that if the 

bottom-up model uses similar shares of 1st and 2nd-generation biofuel production 

technologies, the demand for biomass for transport fuels is 620 PJ in the 

IntHighTech and 670 PJ in the IntHighTech AC scenario.

 

As discussed above and in part II of this study, the applied macro-economic model 

does not allow a sudden shift from one technology to another, and the shift to 

advanced technologies might require a longer transition period (as assumed for the 

bottom-up scenarios). Comparing the outcome of the top-down, macro-economic 

model with the estimate of the bottom-up approach one could expect a larger share 

of 2nd-generation biomass, especially for the HighTech scenarios in the bottom-up 

scenarios as only a limited delay in transition is assumed. Under the IntHighTech 

scenario 1st-generation biomass (oilseeds) still contributes for a significant part to 

total biomass use in the petroleum industry in the top-down model. This outcome is 

explained by the underlying technology assumption of the LEITAP model. Due to 

the fact that technology changes follow a path of substituting an existing 

technology (based on 1st-generation biomass) with a new and modern one (based on 

2nd-generation biomass) the model seems to react a bit ‘sticky’. Thus, LEITAP does 

not allow for drastic changes in the composition of the feedstock in the biomass 

sector.12 Thus, even in the IntHighTech scenario, 1st-generation biomass crops such 

as oilseeds continue to contribute to biofuel production at a significant level. Based 

on the economic model applied for this study the achieved results indicate that an 

economy fully based on 2nd-generation biomass inputs would require a longer 

timeframe for adjustment. 

12	 Other	modelling	approaches	such	as	a	linear-programming	model	would	allow	for	these	immediate	

shifts	in	the	mix	of	1st	and	2nd-generation	biomass.	However,	these	modelling	approaches	would	

neglect	other	important	features	such	as	the	endogenous	development	of	relative	prices	between	

different	inputs.
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Due to the remaining use of 1st-generation biomass crops, even under the HighTech 

scenario some subsidies are still necessary to meet the blending target. 

The ‘persistent’ contribution of 1st-generation biomass also has consequences for 

the calculation of social costs of an enforced utilisation of biomass crops in the bio-

based industries (see Table 1 in part II). 

It should be noted though that also bottom-up optimisation models, e.g. Biotrans 

(Londo et al. 2008), show 1st-generation crops still to have a major share13 for road 

transport fuels in Europe in 2030. The bottom-up assumptions on technology 

substitution in the High-tech scenarios might therefore be too drastic.

5.1.2 Costs of bio-based substitution

The additional costs of substituting fossil energy carriers with biomass are 

expressed in the top-down mode by subsidies required. These are projected for 

transport fuels to be 578 M€ in the NatLowTech scenario, 346 M€ in the IntLowTech 

scenario, 828 M€ in the NatHighTech scenario and 293 M€ in the IntHighTech 

scenario. These results show the sensitivity of the model to international trade 

barriers, but also to technological development. If we compare these projections 

with the additional costs of the bottom-up projections (Figure 17 through Figure 

20), required subsidies are mainly for FT-diesel. This can be explained by the high 

demand for diesel whereas costs for FT-diesel production are also higher than 

conventional diesel at crude oil prices of 50-75 US$/bbl. Furthermore, the top-down 

model does not include additional capital and O&M cost required for 2nd-generation 

technologies. The subsidy levels, as projected with the top-down model are 

therefore expected to be too optimistic for the HighTech scenarios that include 

advanced and capital intensive conversion technologies.

5.2 Methodology

This study is built on a new and innovative approach that links the results of a 

bottom-up approach with the outcome of a macro-economic, general equilibrium 

model to analyse the impact of an enhanced use of biomass inputs in the bio-based 

sectors of the Dutch economy. This approach combines the details of a technology-

based analysis with the complexity of a model which enables to trace the impact of 

changes in relative prices for the overall economy.

The results – presented in part I and II of this study – shows the need for this kind 

of integrated assessment of a move towards a more bio-based oriented economy 

which is built on various uncertainties, e.g. availability of large-scale technologies 

or the development of crude oil prices. The approach of linking bottom-up 

engineering models and macro-economic top-down models is not new, and 

numerous efforts are being made in order to combine the strength of these 

modelling approaches. For example, the bottom-up linear optimisation model 

MARKAL (MArket ALlocation) is coupled to (among others) the CGE model MACRO 

13	 Depending	on	scenario	conditions.
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[Messner et al., 2000], TIMES and GEMINI-E3 [Loulou, 2005] and EPPA [Schäfer and 

Jacoby, 2005]. Introducing bottom-up engineering data in a top-down model is also 

reported by McFarland et al. [2004] and Faber et al. [2007]. However, developing 

scenarios with a top-down model and imposing these detailed scenarios in an 

extended CGE model for multi-sector and large-scale deployment of biomass is 

innovative.

The models were linked by imposing blending shares of biomass in the sectors 

electricity, road transport fuels and chemicals. The final LEITAP model results were 

integrated into the top-down model to enhance the consistency between the models. 

However limited calibration steps were conducted in order to achieve full 

consistency between the models. We planned more iterative feedbacks between the 

two different models, which would also help to calibrate the productivity growth 

path and the different level of substitution elasticities of the macro-economic model 

in a better way, but this proved to be infeasible due to time limitations. This could 

be an area of further research in a follow-up study.

The level of aggregation in the top-down model also limits the possibilities for 

introducing advanced bio-based conversion options, especially for the chemical 

industries. For this research, the chemical sector was divided into bulk and 

specialty chemicals by assuming shares of 80% bulk and 20% specialties as limited 

data was available, mainly for the structure of the specialty chemical industries. 

The available bio-based chemicals in this study are limited to three representative 

options for natural gas replacement (synthesis gas), replacement of base chemicals 

from petroleum products (ethylene) and direct replacement of functionalised 

chemicals (caprolactam). Although more advanced biorefinery options could be 

available in 2030, a full assessment of the macro-economic impact of these 

technologies and advanced energy crops (e.g. GMO) are beyond the scope of the 

current model capabilities and this study. Further research with a disaggregation 

of the chemical industries and petrol sectors [e.g. Choumert, Paltsev et al., 2006] in 

the LEITAP model supported with detailed bottom-up, physical and economic data 

on the structure of these sectors could improve the understanding of the macro-

economic impact of biomass for the chemical industry sectors. 

Full consistency between the top-down and the bottom-up model could be improved 

by introducing an iteration process with data calibration. Full linkage of the results 

could provide more understanding of the technological progress and technology 

substitution and the related cost that are implicit to the top-down projections. 

Furthermore, the impact on the environment, e.g. biodiversity and spatial land-use 

effects could be linked to the physical outputs not covered in this study. Therefore, 

further research is required, which extends the approach of combined assessment 

of technological and economic with environmental effects.
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6 conclusions
Overall, the results of the work show that pursuing a significant role for bio-based 

options and value chains in the Netherlands can have major positive impacts on 

reducing GHG emissions, replacing fossil fuels, as well as economic activity in the 

agricultural and energy sectors. However, the magnitude of such benefits depend 

strongly on the development pathway and the strategies followed. 

The baseline scenario in this study (NatLowTech) results, in 2030, only in 74 PJ 

bioenergy and replacing 113 PJ fossil energy. GHG mitigation amounts 9 Mton, with 

an overall support required of over 300 M€ per year (versus an oil price of 50 U$/

barrel). In contrast, the IntHighTech scenario results in the supply of 680 PJ bio-

energy (and materials), avoidance of 833 PJ fossil energy (around one-quarter of 

total national energy use) and 56 Mton of avoided GHG emissions. The latter is more 

than a quarter of current CO2 emissions from the Netherlands, making a bio-based 

strategy the largest mitigation option currently considered. Required financial 

support versus an oil price of 50 U$/barrel amounts to 2730 M€. IntLowTech and 

NatHighTech give fairly comparable results (both avoid 15 Mton of GHG emissions 

and the primary energy avoided amounts to over 200 PJ). NatHighTech requires 

higher support levels, some 700 M€ vs 310 M€ vs. 50 U$ barrel), especially due to the 

more expensive biomass feedstocks utilised. The IntHighTech AC scenario, 

including a higher blending share of chemicals (25% vs 19% for the IntHighTech 

scenario) requires more biomass than the IntHighTech scenario, but mitigates less 

GHG emissions and primary fossil energy. However, it also requires lower support 

levels (2430 M€ ) than the IntHighTech scenario, as bio-based substitutes for 

petroleum products are more competitive than bio-based substitutes for natural gas.

However, in macro-economic terms the differences between the scenarios are less 

pronounced for impacts on trade balance (overall positive, more so for the HighTech 

scenario’s) and employment (all positive). Clearly, the support levels needed to 

realise the different shares of biomass use for electricity, fuels and materials differ 

strongly between the scenarios, with the (per unit of energy or GHG mitigation 

achieved) highest economic efficiency for the IntHighTech scenario, followed by the 

NatHighTech scenario. This stresses the importance of technology development to 

reduce costs and increase efficiency, and the sensitivity of the results for this factor 

of the HighTech scenarios. In addition, the sensitivity towards the oil price (fossil 

energy prices in general) is high: if oil prices move to well over 75 U$ barrel, the 

IntHighTech scenario becomes fully competitive. This is (to some extent) also true 

for the IntLowTech scenario (especially compared to imports of sugar-cane-based 

ethanol and vegetable oils). However, if this is assumed to be is a worldwide trend, 

price mechanisms would also increase biofuel costs following increasing demand. 

Another factor that would make a key difference is the pricing of CO2
. Results 

obtained suggest that mitigation costs lay between 40-50 €/ton CO
2
 eq avoided in 

2030 for all high-tech scenarios (versus an oil price of 50 U$/barrel). This can be 

considered attractive under the condition that far-reaching targets (20% reduction 
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in 2020 and moving to 50-80% reduction in 2050) are seriously pursued, both in the 

Netherlands and in Europe as a whole. 

Realising high ambitions for a bio-based economy in the Netherlands whilst 

minimising the required financial support and maximising the macro-economic 

benefits would require: accelerating technology development with the emphasis on 

2nd-generation biofuels (feedstock and technology), biochemical options and efficient 

power generation.

An open market approach, allowing for large-scale imports; this is the only way to 

achieve high shares of biomass use in the biofuels and bio-electricity sectors. 

‘Smart’ temporisation of implementation over time, following technology 

development speeds (thus avoiding high levels of financial support for expensive 

bioenergy options).  Stabilising policies that maintain a stable investment climate 

and that dampen the impacts of inevitable fluctuations in oil and CO
2  

prices over 

the coming years. Following such a strategy and subsequently achieving the more 

ambitious scenarios sketched in this study will result in a situation that public 

investments needed in the shorter term are compensated by the macro-economic 

benefits that can be achieved. 

Projections of the macro-economic impact of bioenergy and bio-based materials are 

important for exploring different futures and effects of certain limitations and 

opportunities. However, a full understanding of the role of biomass as a CO
2
 and 

fossil-fuel mitigation option can only be explored for a full set of competing 

mitigation options such as wind, PV or other type of vehicles, including fuel cells or 

plug-in hybrids. It should be noted, however, that this would also demand a further 

disaggregation of the sector/commodities in the CGE model, in combination with 

the use of a bottom-up dedicated energy optimisation model, such as Markal, using 

an integral approach.

In relation to biomass and bioenergy conversion technologies, this study was 

particularly limited when modelling bio-based chemicals. The difference between 

the IntHighTech and IntHightech AC scenario indicates that the LEITAP model is 

sensitive to fossil-based substitution of different products. At the same time, the 

CGE model is limited in representing technologies that produce multiple products 

such as biorefineries. Other studies indicate that the production of chemicals in 

biorefineries (via extraction) substantially increases the added value of energy 

crops and mitigation potential. It would therefore be interesting to explore the 

potential of this concept in a macro-economic model by increasing the added value 

for domestic energy crops by using biorefinery concepts, if sufficient data is 

available.
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