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Abstract— In this paper we present a statistical interpolation
method to generate a time series of system-aggregated wind
power production values that can be used as an input to system
operations planning tools such as Unit Commitment (UC) and
Economic Dispatch (ED). We use historical wind speed data
measured at several locations, in order to estimate average
wind patterns and express the covariance between locations as
a function of their distance. Then, for a new set of locations
where wind parks are planned, we create wind time series for the
study period such that the spatial correlation between the sites
is taken into account. Depending on the system under study,
this may be of specific importance due to the concentration
of areas with favorable wind conditions, resulting in strong
correlations between wind park outputs. These cross-correlations
are essential when evaluating system adequacy and security in
planning mode, in the presence of large-scale wind power. The
resulting aggregated wind power time series are finally fed into
the UC-ED module to help evaluate the amount of total system
reserve required to maintain an adequate level of reliability. The
method is applied to a simplified version of the Dutch power
system.

I. INTRODUCTION

As power systems have to accommodate an increasing
amount of renewable generation, which is often random and
hence non-dispatchable, the need for employing probabilistic
methods in planning of operations becomes more apparent.
Such methods exist already, e.g. to deal with the random
nature of generating unit outages and with load forecasting
uncertainties [1]. Established measures of system reliability
are loss-of-load expectation (LOLE) and expected energy not
served (EENS) [2]. In a Unit Commitment and Economic
Dispatch framework (UC-ED), reserve is added to each time
period of the study to decrease EENS below a given threshold,
whose value is often dictated by financial considerations.

A natural choice for extending this framework is to treat
wind generation as negative load and solve the UC-ED prob-
lem using the average wind power values for each study
period. As a final step, the wind power production uncertainty
can be incorporated into the EENS calculation. This method is
also applicable in a market situation: EENS can then indicate,
to a Load-Serving Entity with conventional as well as wind
production units in its portfolio – instead of the expected

unserved energy – the overall amount of energy imbalance
that it will expect to purchase from the System Operator.

In the case when wind is present on the system, a larger
amount of reserve would have to be allocated from the
remaining conventional units in order to achieve the same
level of reliability (i.e. equal EENS with the case when the
entire load was served by conventional generation only). The
remaining question is how that uncertainty in total wind
production can be quantified. Current methods for creating
(Weibull) probability distributions of wind speeds are not
applicable, as they can only give an idea of the expected wind
energy production at a particular geographic location over long
periods of time, such as yearly outputs (WAsP is a typical
software tool that can be used for this purpose).

Capacity adequacy in the presence of wind energy is inves-
tigated in [3] via a Monte Carlo approach, and the contribution
of wind energy conversion systems to generation system
reliability is quantified. The classic probabilistic approach for
determining the operating reserve in the Pennsylvania-Jersey-
Maryland pool is modified in [4] to account for both the
random nature of wind power output and the unavailability of
wind parks. Reference [5] focuses on quantifying the reserve
requirement for systems with a large degree of wind pene-
tration based on several scenarios for operating conventional
generation and two different wind forecast horizons. Reference
[6] also investigates the impact of wind power on the required
level of three types of system reserves under central dispatch.
However, most of these studies use synthesized wind time
series as an input to the analysis, rather than series based on
actual measurements, as presented in this work. Sophisticated
meteorological models for geographical interpolation of wind
speeds, such as the Internal Boundary Layer, are discussed in
[7]. Unlike our purely statistical method, such models require
accurate knowledge of the roughness of the terrain and also
wind direction information.

With increasing penetration, wind power will have a signif-
icant impact on reserve levels (due to limited predictability of
wind) and ramp rate requirements for conventional units (as
a result of aggregated load and wind power variations) and
therefore on the resulting unit commitment schedules.
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This research focuses on the generation system alone. It is
assumed that no congestion will occur in the transmission sys-
tem, and hence line flow constraints are ignored. Independence
is assumed between the three categories of random variables:
conventional unit outages, load uncertainties, and total wind
production levels. Generation mix by technology is consistent
with the anticipated wind and conventional generation devel-
opments in the next decade in Western Europe. Assumed park
locations and computed wind speeds are based on data from
the Netherlands.

II. WIND SPEED MEASUREMENTS

Wind power production was modelled using weather data
and wind turbine power-speed curves. Wind speed data have
been obtained from the Royal Dutch Meteorological Institute
(KNMI). The data set contains 10-minute wind speed averages
with a resolution of 0.1 m/s for 18 locations in the Netherlands
(9 onshore, 3 coastal, and 6 offshore) measured between
June 1, 2004 and May 31, 2005. This historical wind speed
data is used to estimate average daily wind patterns and to
express the covariance between locations as a function of their
distance. Then, for a new set of locations where wind parks
are planned, wind time series for the study period are created
such that the spatial correlation between the sites is taken into
account. This is required because wind energy production units
will be concentrated in areas with favorable wind conditions,
hence their outputs may be strongly correlated. These cross-
correlations are thus essential when evaluating system reserve
and ramp rate requirements in operations planning mode.

For each of the 18 locations we first plot the sample variance
versus the sample mean in figure 1. We note a clear linear
relationship between the two (the so-called heteroscedasticity).
To suppress it, we apply a variance stabilizing transformation
([8], section 9.2), and from here onwards we will work with
the natural logarithm of wind speed. This will simplify the
regression model presented later in this section by allowing
for a single, mean-independent variance of the interpolated
logarithm wind speeds valid for all locations.
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Fig. 1. Mean-Variance Relation for Wind Speed Measurements

Let W (z, t) be the log wind speed at a location z = (x, y)
in cartesian coordinates and time t = (d, k) defined by day of
the year d and time of day k. We consider a general model:

W (z, t) = µ(z, k) + ε(z, d, k), (1)

where µ(z, k) is a deterministic variable representing the daily
wind pattern by location and ε(z, d, k) is a zero-mean random
process representing the variations around the daily mean. We
will pay special attention to the covariance structure of this
random process, because it is not realistic to assume that the
variations of wind speed about the daily mean are independent
across space, especially for small geographical areas.

In figure 2 we plot the average daily wind pattern for each
of the 18 measured locations:

µ̂(z, k) =
365∑

d=1

W (z, d, k)/365, (2)

for z = 1, 2 . . . , 18, and k = 1, 2 . . . , 24 × 6. This plot
suggests that our model should contain a daily effect that
varies smoothly with geographic location. Measurements sites
on land display a typical unimodal pattern with a maximum
around midday, while sites offshore have a much flatter daily
profile, and the coastal locations fall somewhere in between.
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Fig. 2. Daily Wind Speed (m/s) Pattern for Measured & Estimated Locations

We now have the values for the mean log wind speed
µ(z, k) at the 18 measurement locations. To obtain the mean
log wind speed at a different location we would need to
know its coordinates z = (x, y) and apply a linear spatial
interpolation for locations within the convex hull formed by
the measurement sites, or alternatively, a nearest neighbor
interpolation for locations outside the convex hull. The result
is shown via the dotted lines in figure 2.

In order to estimate the random component ε(z, t), we will
also require a model for the covariance Cov(ε(z1, t), ε(z2, t))
between two locations z1 and z2. Figure 3 shows the covari-
ance between the log wind speed at pairs of locations versus
the distance between them. Looking at this plot, and taking
into account that the covariance should vanish at very large
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distances, it seems reasonable to model it via an exponential
decay:

Cov(ε(z1, t), ε(z2, t)) = αe−β||z1−z2||, (3)

where ||z1 − z2|| denotes the Euclidean distance between the
two locations.

We can estimate the parameters α and β by a least squares
fit. The fit is also shown in figure 3, where α = 0.32, and
1/β = 392.36 (km). The latter term is also known as the
characteristic distance or decay parameter. If we translate
the parameters of this decay fit from logarithmic to pure
wind speeds, and look at correlation coefficients rather than
covariances between location pairs, we obtain a value of
610 km for the characteristic distance. This value is in line
with the 723 km reported in [9] (chapter 6), which is based
on measurements from 60 locations spread throughout the
European Union, and the 500 km reported in [10], using
Danish data alone.
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Fig. 3. Covariance versus Distance for 18 Measurement Sites

Using this exponential decay fit we can now estimate a
vector of covariances between a computed location and all
the measured locations.

III. WIND SPEED SPATIAL INTERPOLATION

A. Method

We want to use the measurement data to estimate a time
series of wind speeds at a new location given its coordinates,
while taking into account the spatial correlations among wind
speeds for the same moment in time. The measured wind
speeds generally refer to a sensor height, which may differ per
location. To convert to a chosen (common) hub height one can
use the methods provided in [11] or [12]. References [11] and
[12] both use the logarithmic vertical wind speed profile to
estimate wind speeds at heights other than the sensor height.
Whereas in [11] the local roughness length is employed, which
is difficult to determine for onshore locations, in [12] this need
is eliminated. Instead, two location-dependent parameters are
used: friction velocity and the average Monin-Obukhov (or
Stability) Length. The sample wind speed standard deviation

provides an estimate of the friction velocity and originates
from the measured wind speed data set. If this standard
deviation is not available and the location is offshore, then the
friction velocity may be estimated directly from the vertical
wind speed profile. Estimating the actual Stability Length by
its average is warranted by the fact that, averaged over a long
period of time, the vertical wind speed profile is stable [13].

Our goal is to interpolate wind speeds at several locations
where we do not have any measurements. More precisely,
we will estimate the conditional distribution of wind speeds
at those locations, given wind speeds at locations where we
do have observations. Choose a time t and suppose that we
want to know the conditional distribution of the wind speed
at n locations z1, z2, . . . , zn, given observed wind speeds at
m locations zn+1, zn+2, . . . , zn+m.

Consider two random vectors, the computed and observed
wind speeds:

X(c) = [W (z1, t),W (z2, t), . . . , W (zn, t)]

X(o) = [W (zn+1, t), W (zn+2, t), . . . , W (zn+m, t)],

and define X as the concatenation of the two vectors:

X =
(

X(c)

X(o)

)
.

Now suppose that X has a multivariate normal distribution
with mean µ and covariance matrix Σ. We can estimate µi

by the appropriate daily average. Similarly, we can estimate
σij by the sample covariance when available, and by using (3)
otherwise. We write

µ =
(

µ(c)

µ(o)

)
, Σ =

(
Σcc Σco

Σoc Σoo

)
.

If det(Σoo) > 0, then conditionally on X(o) the distribution
X(c) is again normal (c.f. [8], section 1.6) and given by:

N (µ(c) + ΣcoΣ−1
oo (X(o) − µ(o)),Σcc − ΣcoΣ−1

oo Σoc). (4)

We define our interpolant X̂(c) as

X̂(c) = E(X(c) | X(o)) = µ(c) + ΣcoΣ−1
oo (X(o) − µ(o)). (5)

The above expectation is the best estimate for X(c) given the
observations X(o) under our assumption of normality.

We have assumed that X (logarithm of wind speeds) has
a multivariate normal distribution for mathematical conve-
nience only. Consequently, we assumed that the wind speeds
would follow log-normal distributions. In reality, the marginal
distributions of wind speeds appear to be better described
by Weibull distributions. However, our results show that the
residuals X(c)−X̂(c) do seem to follow a multivariate normal
distribution with mean 0 and covariance matrix

Σcc − ΣcoΣ−1
oo Σoc. (6)

This is very fortunate indeed, as it will allow us – among other
things – to construct confidence intervals for any function of
X(c) that we might be interested in, such as wind power output
for given speed (see section IV-A).
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B. Cross-Validation

The method was verified by removing one location at a time
from the n-site measurement set and using the remaining n-1
measurement sites to estimate it. The estimation error is itself a
random variable, defined as the difference between estimated
and measured wind speed: Fi = X̂i − Xi, for i = 1 . . . n.
This vector of random variables, each with a sample size of
365×24×6 data points, is characterized by a vector of sample
means and sample standard deviations. The sample mean is
zero for an unbiased estimate. The results for the standard
deviation of the estimation error for the n = 18 sites used in
this study are shown in figure 4. The overall average standard
deviation of the error is about 1.2 m/s. The two locations that
exhibit the largest errors are the meteorological stations of F3
and K13 (3 and 2.5 m/s standard deviation respectively), which
are situated offshore in isolated locations and therefore have
quite distinct behavior from the rest of the measurement set.
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Fig. 4. Standard Deviation (m/s) of the Estimation Error for 18 Locations

C. Interpolation Results

An example of the first week speed profile for a number
of measured and estimated sites is shown in figure 5. The top
subplot shows a week’s worth of measured wind speeds for
two locations selected from the measurement set, which are
the most and the least correlated with the two computed time
series shown in the bottom subplot. This picture illustrates the
idea of simultaneous variation among highly correlated sites.

IV. APPLICATION TO SYSTEM STUDIES

The interpolation method described in section III is applied
to a simplified model of the Dutch power system as it may
look by 2012. This system has a peak load of 20.5 GW and an
installed capacity of around 23 GW (excluding wind power),
out of which about 20% is connected at the distribution level
and hence not available for central dispatch. In addition, about
55% of all units are Combined Heat and Power (CHP), which
exhibit somewhat less flexibility than other technologies due to
their heat demand schedules, in combination with constraints
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Fig. 5. Estimated and Measured Speed Profiles for One Week

coupling their heat and electrical power outputs. The UC-
ED simulation is done sequentially for 15-minute intervals
over a study period of one year. The objective is fuel cost
minimization, while meeting the load and satisfying reserve
and ramp rate constraints. The decision variables are the status
and MW outputs of all dispatchable units in the system. The
simulations are carried out with load served by conventional
generation only as base case, and then for 8 GW installed
wind capacity,. This would cover about 22% of the projected
yearly national electricity consumption. The setup of the UC-
ED simulations carried out for this system study is described
in more detail in [14].

A. Conversion to Wind Power Output

For each of the projected locations, wind turbines have
been modelled using ”smooth cut-out” power-speed curves
to compute the power output for any given wind speed.
The curve used is shown in figure 6 (see example at
http://www.enercon.de).
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Fig. 6. Aggregated Wind Speed to Power Conversion Curve

In the previous section we have described a method for
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interpolating the logarithm of wind speeds. To obtain ordinary
wind speeds, we first exponentiate. If we assume that all
the turbines in a park are perfectly correlated, then we can
multiply the power output of a single turbine by the number
of turbines to get the total output of the wind park. This
computation is not entirely accurate as it ignores park effects,
such as spatial smoothing and wake. However, the ”smooth
cut-out” speed-power curve approximates the offsets for true
cut-out speed among various turbines in the park and results
in a somewhat less dramatic aggregated output changes as
the wind averages oscillate above and below the threshold
value for a single turbine. Wake effects depend on both wind
direction and wind park lay-out; as both are unknown, wake
effects are not considered here.

Via a Monte Carlo simulation we can determine the extent
to which estimation errors in wind speed of the order of
magnitude described in the section III-B will translate into
errors in estimating the aggregated system-wide wind power
output. We sample from a multivariate, normally distributed
logarithm wind speed error function, with mean 0 and co-
variance matrix given by (6). We add this random error to
our estimated log speeds, exponentiate, and pass it through
the power-speed curve (fig. 6). We then sum up the wind
outputs per location and finally average the results to obtain
the system-wide distribution of total wind power production. It
should be noted that the sample mean of the wind production
obtained via this simulation is actually an unbiased estimate
for that particular time point. This mean, together with the
associated point-wise 90% confidence band, is shown in figure
7, for a week’s worth of 10-minute time intervals. This graph
shows that, with 90% confidence, the true aggregated wind
power output will fall somewhere in the range delimited by
the higher and lower black time-series. The standard deviation
of the wind power production (conditional on the observed
wind speeds) increases with the output to be estimated, ranging
from 16 to 1061 MW. The largest uncertainty occurs when
estimating outputs that approach the full installed capacity
of 8000 MW. The average standard deviation comes out to
500 MW, which translates to about 20% of the amount to be
estimated.

B. Estimation of Wind Variability

Given locations and installed powers for future wind parks,
the estimation method in section III can be used in combina-
tion with the aggregated speed-power curve presented in figure
6 to compute system-wide average wind power generated per
15 minute time interval for the duration of an entire year.
(The change from 10 to 15 minute averages was required by
the design of the Dutch energy market.) The total installed
wind power chosen for the simulations was approximately
2 GW onshore and 6 GW offshore. By differentiating the
wind power series we obtain an estimate of the variability
of wind production across 15 minute time intervals. Similarly,
an estimate of system load variability can be constructed. The
sorted load variations during the study year are shown in

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

Time (10 min. Intervals)

A
gg

re
ga

te
d 

W
in

d 
P

ro
du

ct
io

n 
(M

W
)

mean
90% confidence
interval

Fig. 7. Estimate of Total Wind Power with Confidence Interval

figure 8, together with the (correspondingly sorted) aggregated,
load minus wind power variations time series. This graph
shows that the variations in load and wind are uncorrelated, an
assumption which will be used in the following section. The
order of magnitude of the aggregated load and wind power
variations is roughly twice that of load variations alone, and
its maxima may occur equally in either positive or negative
direction. This quantity and its sign are of special interest, as
simultaneous load and wind variations must be balanced by
the remaining conventional generation units via up or down-
ramping of their outputs.
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C. Reserve and EENS

System reserve is allocated among on-line generators to
account for equipment outages and uncertainties in load and
wind forecast errors. Only spinning reserve from conventional
units (i.e. no fast start-up, or electricity storage) was con-
sidered in this study. It is quite obvious that the higher the
forecast uncertainty, the larger the amount of reserve needed
to achieve the same reliability level. In this subsection, we
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use a simulation method to sample from the joint, discrete
distribution of generating capacity outages and the continuous
distribution of net (load minus wind) forecast errors, to arrive
at a value for LOLE per 15 minute time interval. The value
of LOLE is dependent on both the system reserve and the
standard deviation of the prediction errors. The classic LOLE,
EENS and COPT (Capacity Outage Probability Table) con-
cepts employed are described in [15].

1) Load Served by Dispatchable Generation Only: Typ-
ically short-term load forecasting errors are normally dis-
tributed with mean zero and standard deviation around 2.5-3%
[16] (chapter 2). We will assume a conservative value of 4%
in this study.

2) Some Load Served by Wind Power: An often quoted
error estimate in the wind power prediction error, day-ahead,
for a single location, is about 15% of the installed capacity
(see [17] and the excellent survey in [18]). Moving on from
single-site prediction, we would like to mention [19] and [20]
on forecast error aggregation per multiple sites. Based on the
RMSE (root mean-square error) reduction as a function of the
diameter of the area where wind parks are installed provided
in [20], we will assume a 0.25 reduction in the aggregated
offshore wind forecast error (corresponding to an area of about
200 km. diameter) and a 0.50 error reduction for the onshore
forecast error (corresponding to a larger area, of about 400
km. diameter). The idea of convoluting load and wind forecast
error probability density functions – assumed gaussian and
independent – for use in system reserve estimation appears
for the first time in [21].

For the onshore and offshore installed wind capacities
chosen in this study, the resulting standard deviation of the
wind power forecast error is then:

0.15× (0.75Poffshore + 0.5Ponshore)

which comes to 825 (MW) or about 10%. This value is in line
with the 8-9% quoted for the day-ahead Nord Pool electricity
market in [22]. The day-ahead prediction horizon – i.e. 12-36
hours ahead of real-time – is important since this is when the
planning of operations for next day is performed. This time
lead also coincides with the closure of the Day-Ahead Market.

As part of a sensitivity analysis, the impact of larger wind
forecast errors, with standard deviations of 20% and 40%,
were also investigated. A half week’s worth of 15 minute unit
commitment time periods was analyzed. The wind production
time series developed in the first half of this paper were used
as an input to the UC-ED software. The program uses a simple
minimum reserve criteria, i.e. the size of the largest equipment
outage (conventional unit or import interconnector). This cri-
teria is based on traditional utility practices and is independent
of the level of wind penetration, or the wind power forecast
accuracy. The results are shown in table I, where both Reserve
energy and EENS are expressed in percentages of the energy
served over the study period. We can see that up to 20% wind
forecast inaccuracy, the EENS is practically zero, due to about
twice larger reserve amounts compared to the case when the
entire load was served by conventional generation alone. This

is a peculiarity of the system under study, which continues
to commit a relatively large number of units that are lightly
loaded even in the presence of abundant wind generation.
This is due to the heat load schedules for CHP units, and
minimum up- and down-time requirements and start-up costs
for conventional units, which can be significant especially for
large, coal-fired units. As a result, the system reserve (defined
as the sum of the differences between installed capacity and
scheduled MW for all conventional units) implicitly ends up
much above the minimum reserve requirement. Not exactly
cost-efficient but certainly very reliable. Only for the unusually
high wind forecast inaccuracy of 40%, does the system with
wind reach a comparable EENS with the system without wind.

TABLE I
RESERVE AND EENS FOR 3.5 DAYS UC-ED SCHEDULE

Reserve (%) EENS (%)
Load Only σl = 4% 17.5 0.2
Load & Wind σw = 10% 33.7 0.0
Load & Wind σw = 20% 33.7 0.0
Load & Wind σw = 40% 33.7 0.3

The time series for LOLE and system reserve levels are
presented together for a 3.5 day simulation period in figure
9, for the base case (no wind, load served by conventional
generation alone, 4% forecast inaccuracy) and the case of 8
GW installed wind capacity, with an associated 40% forecast
inaccuracy. As expected, periods of lower reserve coincide
with higher LOLE for both cases.
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V. CONCLUSION

A statistical interpolation method to generate time series
of system-aggregated wind power production values has
been developed in this paper. The method takes into account
the spatial correlations among multiple sites, as derived
from the measurement data. A confidence interval for the
system-wide aggregated wind power production estimate
was also derived. The method was used to get an idea of
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the degree of variability introduced by large-scale wind
production as compared to the inherent variations in customer
demand, for a realistic power system. Moreover, the resulting
wind power time series were used as an input to a system
operations planning tool, namely Unit Commitment and
Economic Dispatch, to determine commitment schedules and
MW output levels for conventional units which were available
for central dispatch. The effect of wind forecast inaccuracy
on system-wide reliability indices such as LOLE and EENS
was also investigated. Unfortunately, no feedback from this
analysis back into the UC simulation tool was possible, so
the effect of selective unit decommission and smaller reserve
levels on system reliability could not be investigated.

As part of future work, the Monte Carlo simulation per-
formed to determine EENS should be coupled with the simu-
lation used to establish confidence intervals around the wind
power production time series. Thus, the sensitivity of the
system study to different wind power generation scenarios
could be examined. In addition, it would be interesting to
look at autocorrelative sampling from time series of net load
forecast errors. Also, the incorporation of ramp rate constraints
as a factor in reserve assessment for systems with large
penetrations of wind energy would be a natural extension of
the work presented here.
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