

IEAGHG Technical Report 2017-02 February 2017

Techno - Economic Evaluation of SMR Based Standalone (Merchant) Hydrogen Plant with CCS

IEA GREENHOUSE GAS R&D PROGRAMME

International Energy Agency

The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for Economic Co-operation and Development (OECD) to implement an international energy programme. The IEA fosters co-operation amongst its 28 member countries and the European Commission, and with the other countries, in order to increase energy security by improved efficiency of energy use, development of alternative energy sources and research, development and demonstration on matters of energy supply and use. This is achieved through a series of collaborative activities, organised under 39 Technology Collaboration Programmes (Implementing Agreements). These agreements cover more than 200 individual items of research, development and demonstration. IEAGHG is one of these Implementing Agreements.

DISCLAIMER

This report was prepared as an account of the work sponsored by IEAGHG. The views and opinions of the authors expressed herein do not necessarily reflect those of the IEAGHG, its members, the International Energy Agency, the organisations listed below, nor any employee or persons acting on behalf of any of them. In addition, none of these make any warranty, express or implied, assumes any liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product of process disclosed or represents that its use would not infringe privately owned rights, including any parties intellectual property rights. Reference herein to any commercial product, process, service or trade name, trade mark or manufacturer does not necessarily constitute or imply any endorsement, recommendation or any favouring of such products.

COPYRIGHT

Copyright © IEA Environmental Projects Ltd. (IEAGHG) 2017.

All rights reserved.

ACKNOWLEDGEMENTS AND CITATIONS

This report describes research commissioned by IEAGHG. This report was prepared by:

Amec Foster Wheeler and IEAGHG

The principal researchers were:

- Guido Collodi
- Giuliana Azzaro
- Noemi Ferrari

To ensure the quality and technical integrity of the research undertaken by IEAGHG each study is managed by an appointed IEAGHG manager. The report is also reviewed by a panel of independent technical experts before its release.

The IEAGHG manager for this report was:

Stanley Santos

The expert reviewers for this report are:

- Jeff Brown (Stanford University)
- Bill Cotton, Mark McKenna, Gareth Williams, Sam French (Johnson Matthey)
- Stuart Lodge & CO₂ Capture Team (BP & CCP Project)

The report should be cited in literature as follows:

'IEAGHG, "Techno-Economic Evaluation of SMR Based Standalone (Merchant) Plant with CCS", 2017/02, February, 2017.'

Further information or copies of the report can be obtained by contacting IEAGHG at:

IEAGHG, Pure Offices, Cheltenham Office Park Hatherley Lane, Cheltenham, GLOS., GL51 6SH, UK

Tel: +44 (0)1242 802911 E-mail: mail@ieaghg.org Internet: www.ieaghg.org

Techno-Economics of Deploying CCS in a SMR Based Hydrogen Production using NG as Feedstock/Fuel

Key Messages

- IEAGHG have systematically evaluated the performance and cost of integrating CCS in various energy intensive industries. To date, the programme looked at deploying CCS in the cement, iron and steel, pulp and paper industry, whilst studies in the oil refining, methanol and ammonia/urea production from NG underway.
- Hydrogen is a key raw material to other energy intensive industries. Globally, nearly 90% of the hydrogen produced is consumed by the ammonia, methanol and oil refining industries. In the future, hydrogen could also play an important role in the decarbonisation of space heating (i.e. industrial, commercial, building and residential heating) and transport fuel (i.e. use of fuel cell vehicles).
- Currently, the steam methane reformer (SMR) is the leading technology for H₂ production from natural gas or light hydrocarbons. Modern SMR based hydrogen production facilities have achieved efficiencies that could reduce CO₂ emissions down to nearly 10% above its theoretical minimum. Further reduction of CO₂ emissions from hydrogen production would only be possible by the integration of CCS.
- This study provides an up-to-date assessment of the performance and costs of a modern SMR based H₂ plant without and with CCS producing 100,000 Nm³/h H₂ and operating as a merchant plant (i.e. standalone plant without any integration to an industrial complex).
- Unlike other studies in the series, the capture of CO₂ from an SMR plant is a commercial operation. This is one of the main sources of industrial and food grade CO₂ in the market globally. However, only 3 sites around the world have demonstrated the integration of CO₂ capture with CO₂ transport and storage. These include (a.) Port Arthur Project in the USA, (b.) Quest Project in Canada, and (c.) Tomakomai Project in Japan.
- This study presents the economics of deploying CCS in an SMR based hydrogen plant capturing CO₂ from the (a.) shifted syngas, (b.) PSA's tail gas or (c.) SMR's flue gas. Each capture option was evaluated using IEAHG's standard assessment criteria against a Base Case (i.e. H₂ plant without CCS).
- The Base Case consists of: (a.) feedstock pre-treatment, (b.) pre-reformer, (c.) primary reformer, (d.) high temperature shift reactor and (e.) pressure swing absorption or PSA in single train arrangement producing 100,000 Nm³/h of H₂ (purity >99.9%). It consumes about 14.21 MJ of NG and emits about 0.81 kg of CO₂ per Nm³ H₂ produced. It has a surplus of ~9.9MWe electricity which is exported to the grid.
- The current industry standard for capturing CO₂ from an SMR Based H₂ plant is the capture of CO₂ from the shifted syngas using MDEA solvent. Four other CO₂ capture options were then evaluated as part of this study. These include: the use of H₂ rich burner in conjunction with capture of CO₂ from shifted syngas using MDEA; the capture of CO₂ from PSA's tail gas using MDEA, or the use of Cryogenic and Membrane Separation; and

the capture of CO_2 from flue gas using MEA. These options involve the CO_2 capture rate in the range of 56% to 90%.

- For all the CCS cases, the addition of the CO₂ capture increases the total plant cost by 18% to 79% compared to the Base Case. This corresponds to an additional total capital requirement) of around €40 to €176 million (Q4 2014 estimates).
- For all bar one of the capture options considered, the incorporation of CO₂ capture increases the natural gas consumption by 0.46 to 1.41 MJ/Nm³ H₂. Similarly, all options with CO₂ capture resulted in a reduction of the surplus electricity that could be exported to the grid. These changes resulted to an increase in the operating cost of hydrogen production by 18% to 33% compared to the Base Case.
- Adding CCS to an SMR based H₂ plant results to an increase in the Levelised Cost of Hydrogen between €0.021 and €0.051 per Nm³ H₂ (from €0.114 per Nm³ for the Base Case). This corresponds to a CO₂ avoidance cost (CAC) of between €47 and €70 per tonne of CO₂.

Background to the Study

The IEA Greenhouse Gas R&D Programme (IEAGHG) has undertaken a series of studies evaluating the performance and cost of capturing CO₂ from the different energy intensive industries. The most recent of these studies is the hydrogen production from steam methane reforming (SMR) using natural gas as feedstock and fuel.

Hydrogen is a key raw material to other industries. Globally, nearly 90% of the hydrogen or HyCO gas produced is used by the ammonia, methanol and oil refining industries. In the future, hydrogen could play an important role in the decarbonisation of space heating (i.e. industrial, commercial, building and residential heating) and transport fuel (i.e. use of fuel cell vehicles).

The economics of hydrogen production are determined by several factors such as the cost and quality of the feedstock, and utilities. Around 90% of the feedstock used in the production of hydrogen are from fossil fuels i.e. natural gas, fuel oil and coal¹. Other feedstocks could include other hydrocarbons such as refinery off-gases, LPG, naphtha, petcoke, asphalts, vacuum tars, and others.

The conversion of fossil fuels to hydrogen also produces a significant amount of CO_2 as a byproduct. Environmental concerns regarding the reduction of CO_2 emissions from energy intensive industries (including hydrogen production) should be expected in the future following the Paris Agreement.

Currently, the steam methane reforming (SMR) is the leading technology for H_2 production from natural gas or light hydrocarbons. Most of the modern SMR based hydrogen production facilities can now achieve energy efficiency levels that reduce CO₂ emissions down to nearly 10% above its theoretical minimum. Further reduction of CO₂ emissions from hydrogen production could only be achieved by the integration of CO₂ capture and storage (CCS) in the process scheme.

¹ Coal is mainly used as feedstock to produce hydrogen or HYCO in China and India.

To understand the cost of deploying CCS in the hydrogen production plant, IEAGHG commissioned Amec Foster Wheeler to undertake the "Techno-Economic Evaluation of Hydrogen Production with CO_2 Capture and Storage".

This study aimed to provide baseline information presenting the performance and costs of incorporating the CO_2 capture technologies to a SMR based hydrogen plant operating as merchant plant (as a standalone plant).

The basis of the design of the hydrogen production process are presented in the main report. These are briefly described in this overview. The selection of technology options for CO₂ capture is based on the available information and performance data that could be provided by equipment manufacturers and suppliers.

It should be noted that the study does not aim to provide a definitive comparison of different technologies or technology suppliers because such comparisons are strongly influenced by specific local constraints and market factors, which can be subject to rapid changes.

Scope of Work

Study Cases

This study evaluated the design, performance, and cost of a "greenfield" state-of-the-art SMR plant producing 100,000 Nm³/h of hydrogen using natural gas as feedstock and fuel; and operating in merchant plant mode (i.e. it is a standalone facility without any integration to other processes within an industrial complex).

Specifically, this study is aimed to assess the following cases without and with CCS:

- Base Case: SMR Plant equipped with Feedstock Pre-treatment, Pre-reforming, High Temperature shift and PSA
- Case 1A: SMR with capture of CO₂ from the shifted syngas using MDEA²
- Case 1B: SMR with burners firing H₂ rich fuel and capture of CO₂ from the shifted syngas using MDEA
- Case 2A: SMR with capture of CO₂ from the PSA tail gas using MDEA
- Case 2B: SMR with capture of CO₂ from the PSA tail gas using cryogenic and membrane separation
- Case 03: SMR with capture of CO₂ from the flue gas using MEA³

All of these cases covers the different options where CO_2 could be captured within the H_2 plant (i.e. capture of CO_2 from the shifted syngas, PSA tail gas or SMR flue gas), demonstrating an overall CO_2 capture rate ranging between 50 and 90%.

² Chemical absorption using activated MDEA is currently the state of the art technology for capturing CO₂ from shifted syngas due to the high partial pressure of CO₂ in the gas stream. (i.e. 16%, CO₂ at 2.5 MPa for the shifted syngas and 51%, at 0.2 MPa for the PSA's tail gas).

³ Chemical absorption using MEA is considered as a standard technology normally used in capturing CO₂ from flue gas (i.e. 21%, and 0.1 MPa) as this could serve as a good basis for comparison in future studies.

Basis of Design

SMR Based H₂ Plant

The natural gas is initially pre-treated to remove any sulphur and chlorine present in the feedstock. This prevents any poisoning of the catalysts downstream. This is mixed with process steam and pre-reformed in an adiabatic reactor to convert any light hydrocarbons (mainly converting any C2+ and olefins) before being fed into the primary reformer.

The primary reformer of the H₂ plant (without capture) is based on tubular reformer with terraced wall firing. The syngas produced should consists of CO₂, CO, H₂ and residual CH₄.

The syngas produced from the reformer is then fed into the high temperature shift (HTS) reactor to convert the CO to H₂ thus producing a syngas with residual CO of around 2.5-3% v. This is then fed into the PSA where around 85-90% of H₂ with a purity of 99.9+% are recovered. The PSA tail gas is collected and fed into the burners of the SMR as its primary fuel.

HP Steam is generated by recovering heat from both the convective section of the flue gas and the cooling of the syngas (before and after the shift reactor). The plant is optimized to minimise the amount of excess steam generated by the plant. Any excess steam is delivered to the power island, which consists of a condensing steam turbine, to generate electricity that is exported to the grid.

In this type of SMR plant, all of the CO_2 is emitted from the flue gas of the steam reformer. However, it should be noted that the CO_2 is produced from the following processes:

- CO₂ produced during the reforming and water-gas shift reaction;
- CO₂ produced during the combustion of the residual CO in the PSA tail gas and the natural gas (as supplementary fuel) in the SMR furnace.

Based on these processes, it could be gathered that the CO_2 could be captured from three possible locations:

- the shifted syngas (Option 1),
- the PSA tail gas (Option 2), and
- the SMR flue gas (Option 3).

The capture of CO_2 from an SMR plant is not a new technology. This has been done in various plants worldwide. The capture of CO_2 from the syngas of the SMR is commercially deployed. The current state-of-the-art is based on chemical absorption technology. However, what's new is the integration of capture technologies with CO_2 transport and storage. Additionally, new and novel CO_2 capture technologies are also being developed and demonstrated.

The Part 2 of the Technical Review (Task 1) briefly reviewed the different technology options that is available in the market to capture CO_2 from the different gas streams of the H₂ plant.

Technical Design Basis

The key assumptions used in the evaluation of the performance of the plant are as follows:

• Plant Location:

The site is a "greenfield" location situated in the North East coast of The Netherlands, with no major site preparation required. No restrictions on plant area and no special civil works or constraints on the delivery of equipment are assumed. Rail lines, roads, fresh water supply and high voltage electricity transmission lines, high pressure natural gas pipeline are considered available at plant battery limits.

• Plant Capacity

The plant is designed to produce $100,000 \text{ Nm}^3/\text{h}$ of high purity H₂. Any excess HP steam produced and not used by the plant are converted to electricity. This is exported to the grid.

• Capacity Factor

The study assumes a capacity factor of 70% for its first year of operation and 95% for the rest of the life of the plant. This translates to annual operating hours of 8322 h/y.

• Ambient Conditions:

Main climatic and meteorological data are listed below.

\Rightarrow Atmospheric pressure	101.3	3 kPa
\Rightarrow Average ambient temperature	9	°C
\Rightarrow Average relative humidity	80	%

• Natural Gas (NG) specification

The natural gas (used as feedstock and fuel) is delivered to the battery limit from a high pressure pipeline. The main specifications of the natural gas is summarized in the main report.

• Cooling Water

The primary cooling water system used by the plant is based on once through seawater cooling system. The average supply temperature is set at 12° C. The average return temperature is set at 19° C.

• Product Specifications

The H₂ produced by the plant has a purity of at least 99.5% (min). The CO and CO₂ content should be limited to 10 ppm max. It should be free of other impurities such as H₂S, HCl, COS, HCN and NH₃. The H₂ is sold and delivered to industrial consumers. The pressure and temperature at the battery limit is at 2.5MPa and 40°C respectively.

The CO₂ produced by the CO₂ capture plant has a purity of at least 99% (min). The moisture content is less than 10 ppmv. The CO₂ product is delivered to a pipeline for use in EOR. The pressure and temperature at the battery limit is at 11.0 MPa and 30°C (max).

General Criteria for Economic Evaluation

Where applicable, the criteria for economic evaluation used in this study is based on the information retrieved from IEAGHG document "Criteria for Technical and Economic Assessment of Plants with Low CO₂ Emissions" Version C-6, March 2014. Other key criteria and assumptions relevant to the operation of the hydrogen plant are based on the information provided by Amec Foster Wheeler.

The criteria used in the evaluation of the cost of hydrogen production and CO₂ avoided cost are summarized below:

• Plant Life

The plant is design for an economic life of 25 years.

• Financial leverage (debt / invested capital)

All capital requirements are treated as debt, i.e. financial leverage equal to 100%.

• Discount Rate

Discounted cash flow analysis is used to evaluate the levelised cost of H_2 production (LCOH) and CO₂ avoidance cost (CAC). The discount rate of 8% is assumed.

• Inflation Rate

Not considered in the discounted cash flow analysis.

• Depreciation

Not considered in the discounted cash flow analysis. The results presented in this study is reported on Earnings Before Interest, Taxes, Depreciation and Amortization (EBITDA) basis.

• Design and Construction Period

The design and construction period and the curve of capital expenditure assumed in this study is presented below:

- \Rightarrow Construction period: 3 years
- \Rightarrow Curve of capital expenditure

Year	Investment cost %
1	20
2	45
3	35

• Decommissioning Cost

This is not included in the discounted cash flow analysis. The salvage value of equipment and materials is normally assumed to be equal to the costs of dismantling and site restoration, resulting to a zero net cost for decommissioning.

• Estimate accuracy

The estimate is based on AACE Class 4 estimate (with accuracy in the range of +35%/-15%), using 4Q-2014 price level, in euro ($\textcircled{\bullet}$).

Definition of Cost

Capital Cost

The capital cost is presented as the Total Plant Cost (TPC) and the Total Capital Requirement (TCR).

TPC is defined as the installed cost of the plant, including project contingency. This is broken down into:

- Direct materials
- Construction
- EPC services
- Other costs
- Contingency

TCR is defined as the sum of:

- Total plant cost (TPC)
- Interest during construction
- Owner's costs
- Spare parts cost
- Working capital
- Start-up costs

For each of the cases the TPC has been determined through a combination of licensor/vendor quotes, the use of Amec Foster Wheeler's in-house database and the development of conceptual estimating models, based on the specific characteristics, materials and design conditions of each item of equipment in the plant. The other components of the TCR have been estimated mainly as percentages of the TPC of the plant. These are summarized in Section 3.5.

Fixed Operating Cost

The fixed operating cost includes the following:

- direct labor cost
- administrative and general overhead cost
- annual operating and maintenance cost
- insurance
- local taxes and fees

Variable Operating Cost

The variable operating cost include the consumptions of the following key items:

- Feedstock (natural gas)
- Raw water make-up
- Catalysts
- Chemicals

Levelised Cost of Hydrogen

The Levelised Cost of Hydrogen (LCOH) is used to calculate the unit cost of producing hydrogen over their economic lifetime. This is defined as the price of hydrogen which enables the present value from all sales of hydrogen (including the additional revenue from the sale of electricity) over the economic lifetime of the plant to equal the present value of all costs of building, maintaining and operating the plant over its lifetime.

The method of calculation is based on a discounted cash flow analysis. This is similar to how the Levelised Cost of Electricity (LCOE) are calculated in other IEAGHG studies, except that it is necessary to take into account the revenues from the sale of electricity as co-product.

The LCOH in this study is calculated assuming constant (in real terms) prices for fuel and other costs and constant operating capacity factors throughout the plant lifetime, apart from lower capacity factors in the first year of operation.

Cost of CO2 Avoidance

The CO₂ avoidance cost (CAC) were calculated by comparing the CO₂ emissions per $Nm^3 H_2$ and the LCOH of plants with capture and a reference plant without capture.

 $CO_{2} \text{ Avoidance Cost (CAC)} = \frac{LCOH_{CCS} - LCOH_{Reference}}{CO_{2} \text{Emissions }_{Reference} - CO_{2} \text{Emissions }_{CCS}}$

where:

- CAC is expressed in €per tonne of CO₂
- LCOH is expressed in €per Nm³/h H₂
- CO₂ emission is expressed in tonnes of CO₂ per Nm³ of H₂

Key Assumptions

The assumptions used to calculate of the total capital requirements include:

• Spare parts cost

0.5% of the TPC is assumed to cover spare part costs. It is also assumed that spare parts have no value at the end of the plant life due to obsolescence.

• Start-up cost

The start-up costs consist of the following items:

 \Rightarrow 2% of TPC to cover any modifications to the plant that would bring the different units to full capacity.

- \Rightarrow 25% of the monthly feedstock and fuel cost to cover any inefficient operation during the start-up period.
- \Rightarrow 3 months of the operating labour and maintenance labour cost to cover manpower and personnel training cost.
- \Rightarrow 1 month of chemicals, catalyst and waste disposal cost and maintenance materials cost.
- Owner's cost

Owner's costs cover the costs of feasibility studies, surveys, land purchase, construction or improvement to the infrastructure beyond the site boundary (i.e. road, port, railway, water supply, etc..), owner's engineering staff costs, permitting and legal fees, arranging financing and other miscellaneous costs.

Owner's costs are assumed to be all incurred in the first year of construction, allowing for the fact that some of the costs would be incurred before the start of construction.

7% of the TPC is assumed to cover the Owner's cost and fees.

• Interest during construction

Interest during construction is calculated from the plant construction schedule and the interest rate is assumed to be the same as the discount rate. Expenditure is assumed to take place at the end of each year and interest during construction payable in a year is calculated based on money owed at the end of the previous year.

• Working capital

The working capital includes inventories of fuel and chemicals (materials held in storage outside of the process plants). Storage for 30 days at full load is considered for chemicals and consumables. It is assumed that the cost of these materials are recovered at the end of the plant life.

The assumptions used to calculate of the fixed operating cost are as follows:

• Direct labour cost

The yearly cost of the direct labour is calculated assuming an average salary of $60,000 \notin y$. The number of personnel engaged in the plant's operation is estimated for each plant type where 5 shift working pattern is considered.

This study assumes 38 personnel needed for the Base Case and 5 more additional personnel for all cases with CO₂ capture.

• Admin and general overhead cost (indirect labour cost)

Generally, the overhead cost is dependent on the company's organization structure and complexity of its operation. This normally covers functions which are not directly involved in the daily operation of the plant.

These functions could include:

- \Rightarrow Management;
- \Rightarrow Administration;
- \Rightarrow Personnel services;
- \Rightarrow Clerical staff
- \Rightarrow Technical services;
- \Rightarrow R&D staff

This study assumes that the indirect labour cost is equal to 30% of the direct labour and maintenance labour cost.

• Annual operating and maintenance cost

A precise evaluation of the cost of maintenance would require a breakdown of the costs amongst the numerous components and packages of the plant. Since these costs are all strongly dependent on the type of equipment selected and their statistical maintenance data provided by the selected vendors. This kind of evaluation of the maintenance cost is premature for this type of study.

For this reason the annual maintenance cost of the plant is estimated as a percentage of the TPC. 1.5% is assumed for all cases. This generally applies to all of the major processes, utilities and off-sites.

Additionally, estimates can be separately expressed as maintenance labour and maintenance materials. A maintenance labour to materials ratio of 40:60 can be statistically considered for this study.

• Insurance cost

0.5% of the TPC is assumed to cover the insurance cost.

• Local taxes and fees

0.5% of the TPC is also assumed to cover the local taxes and fees.

The key assumptions used in estimating the variable operating cost are as follows:

• The assumed prices of the consumables and miscellaneous items are presented in Table 1.

Item	Unit	Cost	Sensitivity Range
Natural gas	€GJ (LHV)	6	2 to 18
Raw process water	€m ³	0.2	-
Electricity	€MWh	80	20 to 100
CO ₂ transport and storage	€t CO ₂ stored	10	-20 to 40
CO ₂ emission cost	€t CO ₂ emitted	0	0 to 100

Table 1: Assumed prices for consumables and other miscellaneous items

The Transport and storage cost is specified in accordance to the range of costs reported by the European Zero Emissions platform's report [ZEP 2011]⁴. The sensitivity to the transport and storage costs are assessed to cover the lower or negative cost for EOR application (due to revenues for sale of CO_2) or higher cost – in case of off-shore CO_2 storage or with long distance CO_2 transport requirements.

• Chemical and Catalyst Cost

The cost of chemicals is assumed fixed at an annual cost of $\leq 100,000$ for all cases. This generally accounts for the cost of chemicals used in the treatment of demi-water, process water, boiler feed water, cooling water, and others.

The catalyst cost which covers the catalyst used in the feedstock pre-treatment, prereformer, reformer and shift reactor is also fixed at 320,000 per year (except for Case 2B which is set at 405,000 per year).

Findings of the Study

Plant Performance

Figures 1 to 6 present the simplified block flow diagram of the different cases evaluated in this study. A summary of the performance of the SMR based H₂ plants with and without capture is given in Table 2.

For Cases 1A, 2A and 3, the capture of CO_2 are based on chemical absorption technology; demonstrating an overall CO_2 capture rate from 55% to 90%. This results to an increase in the natural gas consumption from 0.45 to 1.40 MJ/Nm³ H₂ to generate the steam required for the solvent regeneration. The steam is obtained from a back-pressure steam turbine. Additional electricity required by the CO_2 capture system results in a significant reduction of electricity that could be exported to the grid (with Case 2A requiring additional import of ~1.1MWe of electricity).

For Case 1B, the overall CO₂ capture rate is increased to about 64% (as compared to Case 1A at 54%). This is achieved by burning H₂ rich fuel instead of natural gas as a supplementary fuel for the SMR burners. The H₂ rich fuel is obtained from the sweet syngas coming from the MDEA CO₂ capture plant. For this case, the raw syngas production capacity of the SMR and its associated equipment is enlarged by around 27% to maintain a fixed production capacity of 100,000 Nm³/h H₂.

For Case 2B, the CO_2 is captured from the PSA tail gas using low temperature CO_2 separation and membrane technology. In this case, the natural gas consumption has been reduced by 0.03 MJ/Nm³ H₂ as compared to the Base Case. The electricity required by the CO₂ capture plant also reduced the net amount of electricity that could be exported.

It should be noted that the technology used in Case 2B could be re-configured to increase the hydrogen production by around 5%. However, for this study, the production rate was fixed at $100,000 \text{ Nm}^3$ /h and to maximise the CO₂ capture rate, this option was not considered.

⁴ Zero Emission Platform (2011). "The Cost of CO₂ Transport" and "The Cost of CO₂ Storage"

Figure 1: Base Case - SMR plant without CO₂ capture producing 100,000 Nm³/h H₂.

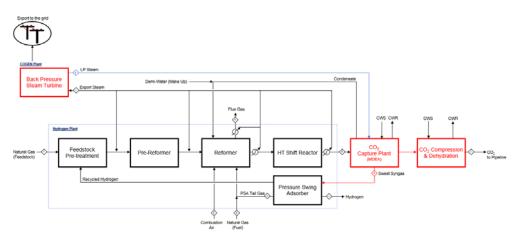


Figure 2: Case 1A - SMR Plant with capture of CO₂ from shifted syngas using MDEA

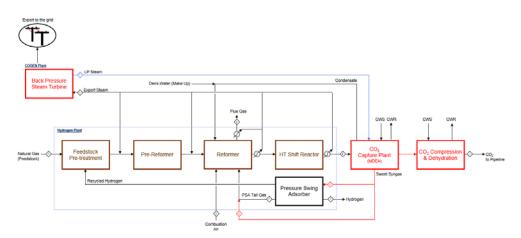


Figure 3: Case 1B - SMR Plant with H₂ rich burners and capture of CO₂ from shifted syngas using MDEA

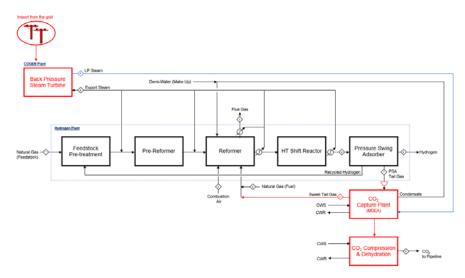


Figure 4: Case 2A - SMR plant with capture of CO₂ from PSA tail gas using MDEA

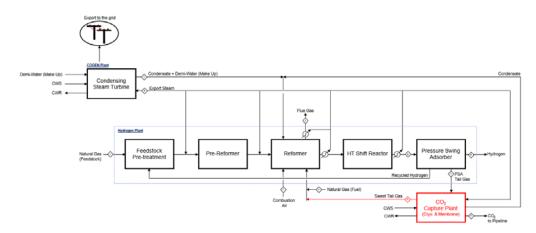


Figure 5: Case 2B - SMR Plant with capture of CO₂ from PSA tail gas using low temperature and membrane separation

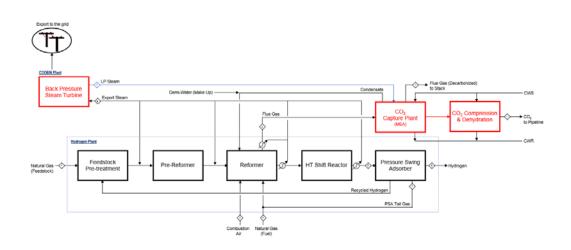


Figure 6: Case 3 - SMR Plant with capture of CO₂ from SMR flue gas using MEA

Table 2: Plant Performance Summary

		Base Case	Case 1A	Case 1B	Case 2A	Case 2B	Case 3
Inlet Stream							
NG to Feedstock	t/h	26.231	26.262	33.333	26.231	26.231	26.231
NG to Fuel	t/h	4.332	5.300	0.000	5.597	4.264	7.347
LHV	MJ/kg	46.50	46.50	46.50	46.50	46.50	46.50
Total Energy Input (A)	MW	394.77	407.68	430.55	411.11	393.89	433.72
Outlet Stream							
H2 to B.L.	t/h	8.994	8.994	8.994	8.994	8.994	8.994
	Nm ³ /h	100,000	100,000	100,000	100,000	100,000	100,000
LHV	MJ/kg	119.96	119.96	119.96	119.96	119.96	119.96
Total Energy in Product (B)	MW	299.70	299.70	299.70	299.70	299.70	299.70
Power Balance							
Gross Power Output from COGEN Plant	MWe	11.500	6.700	8.000	6.900	11.000	11.700
H2 Plant	MWe	-1.216	-1.257	-1.582	-1.264	-1.216	-1.314
COGEN Plant Auxiliaries, Utilities, BOP	MWe	-0.366	-0.377	-0.440	-0.397	-0.511	-1.677
CO2 Capture Plant	MWe	NA	-0.569	-0.717	-3.435	-8.989	-2.001
CO2 Compression and Drying	MWe	NA	-3.005	-3.719	-2.874	(See note below)	-6.282
Export Power to the Grid (C)	MWe	9.918	1.492	1.542	-1.070	0.284	0.426
Specific Consumption							
NG to Feedstock	MJ/Nm ³ H2	12.197	12.212	15.500	12.197	12.197	12.197
NG to Fuel	MJ/Nm ³ H2	2.014	2.465	-	2.603	1.983	3.416
Total (Feedstock + Fuel)	MJ/Nm ³ H2	14.212	14.676	15.500	14.800	14.180	15.614
Plant Performance							
Specific CO2 Emissions	kg/Nm ³ H2	0.8091	0.3704	0.2918	0.3870	0.3772	0.0888
Specific CO2 Captured	kg/Nm ³ H2	NA	0.4660	0.5899	0.4556	0.4289	0.8004
Overall CO2 Capture Rate (Case Specific)		NA	55.7%	66.9%	54.1%	53.2%	90.0%
Overall CO2 Avoided (as compared to Base Case)		NA	54.2%	63.9%	52.2%	53.4%	89.0%

Note: CO2 compression and drying included in the CO2 capture plant

Economic Evaluation

Capital Cost

The capital costs of the plants are summarised in Table 3 and the breakdown of the total plant cost are given in Figure 7.

To include the partial capture of CO_2 from an SMR plant (i.e. CO_2 capture rate of 53-65%), the increase in the specific total plant cost per Nm³/h of H₂ are in the range of 18-42% as compared to the Base Case. On the other hand, to capture about 90% of CO₂ from an SMR plant, the increase in the specific capital cost is about 79% as compared to the Base Case.

	Total Plant Cost (TPC) (million €)	Total Capital Requirement (TCR) (million €)	% Increase to the TPC as compared to Base Case		
Base Case	170.95	222.89			
CO ₂ Capture from Shifted Syngas					
Case 1A	201.80	263.91	18.0%		
Case 1B	228.48	298.68	33.7%		
CO ₂ Capture from PSA Tail Gas					
Case 2A	226.07	295.21	32.2%		
Case 2B	241.44	313.87	41.2%		
CO ₂ Capture from Flue Gas					

Case 3 305.33	398.48	78.6%
---------------	--------	-------

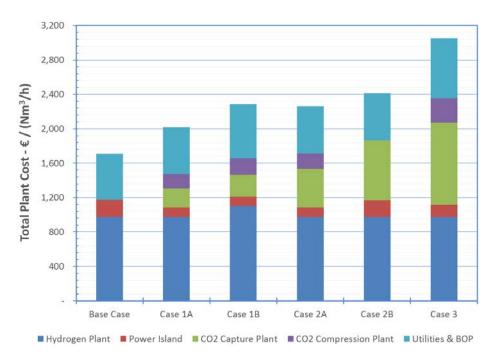


Figure 7: Specific Total Plant Cost - SMR Based H₂ Plant

Operating Cost

The operating cost (OPEX) of the plant includes the costs for: labour, O&M, feedstock, fuel, catalyst, and chemicals. Table 4 summarises the annual OPEX for all the different cases considered.

From these results, it could be noted that the biggest factors that could increase the OPEX of the plant with CO₂ capture are the cost of feedstock/fuel, maintenance, and the loss of revenue from the sale of electricity.

ANNUAL O&M COST					
Base Case	Case 1A	Case 1B	Case 2A	Case 2B	Case 3
€/year	€/year	€/year	€/year	€/year	€/year
2,280,000	2,580,000	2,580,000	2,580,000	2,580,000	2,580,000
991,714	1,137,247	1,185,264	1,180,922	1,208,592	1,323,590
1,709,520	2,018,040	2,284,800	2,260,680	2,414,400	3,053,280
2,564,280	3,027,060	3,427,200	3,391,020	3,621,600	4,579,920
7,545,514	8,762,347	9,477,264	9,412,622	9,824,592	11,536,790
»)					
70,965,387	73,281,851	77,393,826	73,899,460	70,804,450	77,962,676
99,365	101,861	128,658	101,362	99,365	70,07
420,000	420,000	505,000	420,000	420,000	420,000
71,484,752	73,803,712	78,027,484	74,420,822	71,323,814	78,452,748
79,030,265	82,566,059	87,504,748	83,833,444	81,148,406	89,989,538
-6,603,008	-993,314	-1,026,602	712,363	-189,076	-283,614
-	3,877,737	4,908,973	3,791,720	3,569,042	6,661,077
72,427,258	85,450,483	91,387,119	88,337,527	84,528,373	96,367,002
	€/year 2,280,000 991,714 1,709,520 2,564,280 7,545,514 70,965,387 99,365 420,000 71,484,752 79,030,265 -6,603,008 -	Base Case Case 1A €/year €/year 2,280,000 2,580,000 991,714 1,137,247 1,709,520 2,018,040 2,564,280 3,027,060 7,545,514 8,762,347 99,365 101,861 420,000 420,000 71,484,752 73,803,712 79,030,265 82,566,059 -6,603,008 -993,314 - 3,877,737	Base Case Case 1A Case 1B €/year €/year €/year 2,280,000 2,580,000 2,580,000 991,714 1,137,247 1,185,264 1,709,520 2,018,040 2,284,800 2,564,280 3,027,060 3,427,200 7,545,514 8,762,347 9,477,264 70,965,387 73,281,851 77,393,826 99,365 101,861 128,658 420,000 420,000 505,000 71,484,752 73,803,712 78,027,484 79,030,265 82,566,059 87,504,748 -6,603,008 -993,314 -1,026,602 - 3,877,737 4,908,973	Base Case Case 1A Case 1B Case 2A €/year €/year €/year €/year €/year 2,280,000 2,580,000 2,580,000 2,580,000 2,580,000 991,714 1,137,247 1,185,264 1,180,922 1,709,520 2,018,040 2,284,800 2,260,680 2,564,280 3,027,060 3,427,200 3,391,020 7,545,514 8,762,347 9,477,264 9,412,622 70,965,387 73,281,851 77,393,826 73,899,460 99,365 101,861 128,658 101,362 420,000 420,000 505,000 420,000 71,484,752 73,803,712 78,027,484 74,420,822 79,030,265 82,566,059 87,504,748 83,833,444 -6,603,008 -993,314 -1,026,602 712,363 - 3,877,737 4,908,973 3,791,720	Base Case Case 1A Case 1B Case 2A Case 2B €/year €/year €/year €/year €/year €/year 2,280,000 2,580,000 2,580,000 2,580,000 2,580,000 2,580,000 991,714 1,137,247 1,185,264 1,180,922 1,208,592 1,709,520 2,018,040 2,284,800 2,260,680 2,414,400 2,564,280 3,027,060 3,427,200 3,391,020 3,621,600 7,545,514 8,762,347 9,477,264 9,412,622 9,824,592 70,965,387 73,281,851 77,393,826 73,899,460 70,804,450 99,365 101,861 128,658 101,362 99,365 420,000 420,000 505,000 420,000 420,000 71,484,752 73,803,712 78,027,484 74,420,822 71,323,814 79,030,265 82,566,059 87,504,748 83,833,444 81,148,406 -6,603,008 -993,314 -1,026,602 712,363 -189,076 -3,

Table 4: Operating Cost of SMR Based H₂ Plant

Levelised Cost of Hydrogen and CO2 Avoidance Cost

The levelised costs of hydrogen (LCOH) and CO_2 avoidance cost (CAC) are shown in Table 5 and its breakdown are shown in Figure 8.

Case	LCOH Euro Cent/Nm ³	CO2 Avoidance Cost €t
Base	11.4	-
Case 1A	13.5	47.1
Case 1B	14.6	62.0
Case 2A	14.2	66.3
Case 2B	14.0	59.5
Case 3	16.5	69.8

Table 5. Summary of results: LCOH and CAC

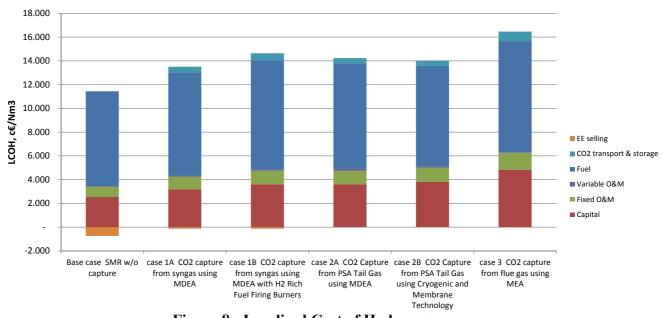


Figure 8: Levelised Cost of Hydrogen

Sensitivity Analysis

Figure 9 presents the sensitivity of the CO₂ avoidance cost to the price of natural gas. It could be demonstrated that with a lower natural gas price, Case 1A has the lowest CAC. Whilst, a higher natural price could favour Case 2B.

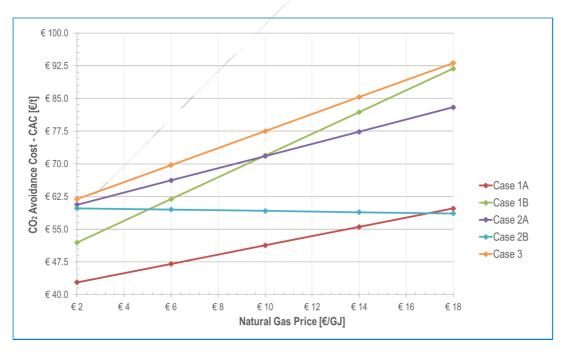


Figure 9: Sensitivity of CAC to the price of natural gas

Figure 10 presents the sensitivity of the CO_2 avoidance cost to the selling/buying price of the electricity. It could be illustrated that the increasing electricity price has a larger impact to Case 2A than in any other cases (i.e. violet line with steeper slope). This is mainly due to the requirements of the H₂ plant to import electricity from the grid to cover the additional demand of the CO_2 capture facilities.

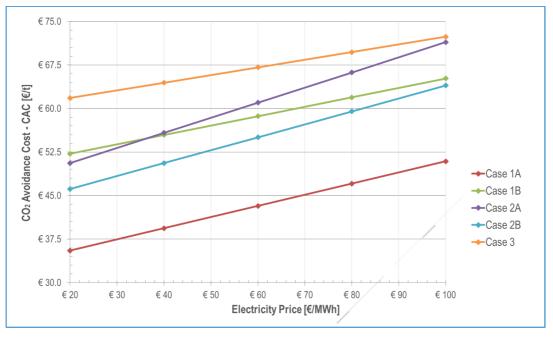


Figure 10: Sensitivity of CAC to the selling/buying price of electricity

Figure 11 presents the sensitivity of the cost of CO₂ emissions (i.e. CO₂ tax) to the LCOH. It can be seen that it would need a cost of \notin 75-100/t on CO₂ emissions to make the higher capture rate option (Case 3) more attractive than the partial CO₂ capture rate (as compared to Case 1A to Case 2B).

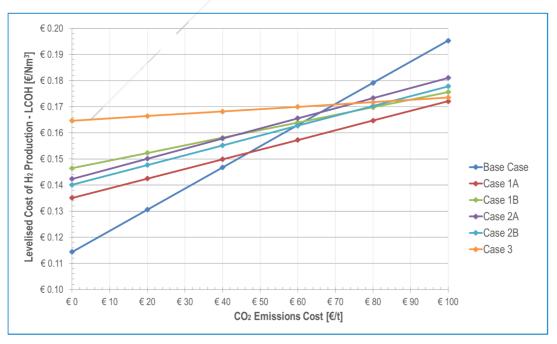


Figure 11: Sensitivity of LCOH to the CO₂ Emissions Cost (i.e. CO₂ Tax)

Conclusions

- In a SMR based H₂ plant, CO₂ could be captured from three areas of the plant: (1.) shifted syngas, (2.) PSA tail gas, or (3.) SMR flue gas.
- The study has presented a detailed baseline information on the performance and cost of deploying CO₂ capture and storage in a SMR based H₂ plant using natural gas as a feedstock / fuel and operating as a merchant plant (i.e. a standalone facility without any integration to other industrial processes on an industrial complex).
- Case 1A presents the current state-of-the-art technology for a SMR based H₂ plant with CCS. In this case, capturing CO₂ from the shifted syngas using MDEA could increase the natural gas consumption by 0.46 MJ/Nm³ H₂ compared to the Base Case. This results in an avoided CO₂ of 54%. This increases the LCOH by 2.1 c€Nm³ (at 13.5 c€Nm³) as compared to the Base Case.
- Case 1B presents a scenario whereby H₂ rich fuel could be used as supplementary fuel (instead of natural gas). Compared to Case 1A, the CO₂ avoided has been increased from 54% to 64%. This case would require the scaling up of the capacity of the SMR and associated equipment by 27% to produce enough syngas to maintain the fix production rate of 100,000 Nm³/h H₂ (as part of the sweet syngas is used as supplementary fuel to the burners of the SMR). This results in an increase of the natural gas consumption by 1.3 MJ/Nm³ H₂ as compared to the Base Case. Consequently, this increases the LCOH by 3.2 c€Nm³ (at 14.6 c€Nm³).
- Case 2A presents the second conventional way of capturing CO₂ from an SMR based H₂ plant. This involves the capture of CO₂ from the PSA tail gas using chemical absorption (using MDEA). This case can achieve a CO₂ avoidance of 52%. The plant's natural gas consumption increases to 14.8 MJ/Nm³ (this is an increase of 0.59 MJ/Nm³ as compared to Base Case). The additional electricity consumption also include the re-compression of the tail gas to 10 bar; thus requiring to buy electricity from the grid of around 1.1MWe to cover the deficit. Consequently, this increases the LCOH by 2.8 c€Nm³ (at 14.2 c€Nm³) as compared to the Base Case.
- Case 2B presents a technology that could be classified as high CAPEX / low OPEX plant – which could be suitable for regions of the world where the natural gas price is very high. In this case, the CO₂ is captured from the PSA tail using low temperature and membrane separation technology. It could be seen that the natural gas consumptions could be slightly reduced by 0.03 MJ/Nm³ as compared to the Base Case, slightly off-setting the high CAPEX required. This case results in an increase in an increase to the LCOH of 2.6 c€Nm³ (at 14.0 c€Nm³) as compared to the Base Case.
- Case 3 presents one of the options to capture around 90% CO₂ emitted by the SMR (high capture rate scenario). In this case, CO₂ is captured from the SMR flue gas. In this case, the natural gas consumption of the SMR based H₂ plant increases by 1.6 MJ/Nm³ H₂ as compared to the Base Case which results in an increase of the LCOH by 5.2 c€Nm³ (at 16.5 c€Nm³)

Recommendations

Among the different energy intensive industries evaluated, the SMR based H_2 production is considered as a low hanging fruit for early deployment of CCS. This could be demonstrated by the number of large scale demonstration and pilot projects that are operational or under construction. This is also relevant in other energy intensive industries such as production of ammonia/urea, methanol, DRI and many others. IEAGHG should continue to monitor the development of deploying CCS in this industrial sector.

Additionally, it is also recommended to summarise IEAGHG's studies on costs and emissions of coal and natural gas-based hydrogen production plants with CCS to provide a good overview that could bring together information gathered in this area to feed into new projects such as future decarbonisation strategy for space heating or transport fuel.

Furthermore, this study only covers case scenarios where data of the performance and cost are available to the contractor. This has not covered other technologies that would allow further improvement in efficiency or reduction of cost of capturing CO_2 from the hydrogen plant. It is highly recommended to pursue the evaluation of other cases – which could include but not limited to:

- The evaluation of other reforming configuration especially very large scale H2 production will be considered. This could include (a.) SMR in parallel or series with gas heated reformer or (b.) use of autothermal reformer in standalone configuration or in tandem with the SMR.
- The importance of evaluating the use of low temperature or medium temperature shift to achieve deeper reduction of CO₂ emission for the Base Case should be also considered in the scope of future studies. This study should cover the optimisation of the natural gas consumption with respect to its CO₂ reduction potential and the amount of export electricity to the grid.
- The use of advance solvent (i.e. second and third generation chemical absorption technologies) to evaluate the potential improvement in efficiency and cost.
- The use of other novel adsorption technology (i.e. PSA or VPSA, membrane, etc...) to capture CO₂ from the shifted syngas or PSA's tail gas.
- Specifically, future study could also evaluate the use of split flow configuration with MDEA solvent for Cases 1A, 1B and 2A. It is essential to identify the trade-off between improving efficiency and expected higher capital expenditure when these configuration are employed.
- It is also important to establish the baseline information for capturing CO₂ from shifted syngas using physical solvent. This should be relevant to any H₂ plants where higher delivery pressure of the H₂ product is necessary.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 1 of 112

CLIENT	:	IEA Greenhouse Gas R&D Programme (IEAGHG)
PROJECT NAME	:	Techno-Economic Evaluation of H ₂ Production with CO ₂ Capture
DOCUMENT NAME	:	Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant
FWI CONTRACT	:	1BD0840A

ISSUED BY	:	G. Azzaro / N. Ferrari
CHECKED BY	:	G. COLLODI
APPROVED BY	:	G. COLLODI

DATE	REVISED PAGES	ISSUED BY	CHECKED BY	APPROVED BY

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant

IEAGHG

Revision No.: FINAL Date: December 2016 Sheet: 2 of 112

TABLE OF CONTENTS

1.	Intr	roduction	7
2.	Bas	e Case	9
	2.1.	Basis of Design	9
	2.2.	Units Arrangement	
	2.3.	Overall Block Flow Diagram	
	2.4.	Process Description	
		2.4.1. Hydrogen Plant	
		2.4.2. Cogen Plant (Power Island)	16
		2.4.3. Demi-Water Plant and Cooling Water System	17
		2.4.4. Balance of Plant (BoP)	17
	2.5.	Process Flow Diagram (Hydrogen Plant)	18
	2.6.	Heat and Mass Balance	19
	2.7.	Plant Performance Data	20
	2.8.	Preliminary Utilities Consumption	21
	2.9.	Preliminary Equipment List and Size of the Main Components/Packages	22
3.	Cas	se 1A	23
	3.1.	Basis of Design	23
	3.2.	Units Arrangement	24
	3.3.	Overall Block Flow Diagram	25
	3.4.	Process Description	26
		3.4.1. Hydrogen Plant	
		3.4.2. CO ₂ Capture Plant (MDEA based Chemical Absorption Technology).	26
		3.4.3. CO ₂ Compression and Dehydration	
		3.4.4. Cogen Plant (Power Island)	
		3.4.5. Demi-Water Plant and Cooling Water System	
		3.4.6. Balance of Plant (BoP)	
	3.5.	Process Flow Diagram (Hydrogen Plant and CO ₂ Capture System)	
	3.6.	Heat and Mass Balance	
	3.7.	Plant Performance Data	32
	3.8.	Preliminary Utilities Consumption	33
	3.9.	Preliminary Equipment List and Size of Main Components/Packages	

IEAGHG	Revision No.: FINAL	
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 3 of 112

4.	Cas	e 1B	35
	4.1.	Basis of Design	35
	4.2.	Units Arrangement	
	4.3.	Overall Block Flow Diagram	
	4.4.	Process Description	
		4.4.1. Hydrogen Plant	.38
		4.4.2. Considerations on Hydrogen-Rich Fuel Burners	.38
		4.4.3. CO ₂ Capture Plant (MDEA based Chemical Absorption Technology)	.40
		4.4.4. CO ₂ Compression and Dehydration	
		4.4.5. Cogen Plant (Power Island)	.41
		4.4.6. Demi-Water and Cooling Water System	
		4.4.7. Balance of Plant (BoP)	.41
	4.5.	Process Flow Diagram (Hydrogen Plant and CO ₂ Capture System)	
	4.6.	Heat and Mass Balance	.43
	4.7.	Plant Performance Data	44
	4.8.	Preliminary Utilities Consumption	45
	4.9.	Preliminary Equipment List and Size of Main Components/Packages	.46
5.	Cas	e 2A	47
	5.1.	Basis of Design	47
	5.2.	Units Arrangement	
	5.3.	Overall Block Flow Diagram	49
	5.4.	Process Description	
		5.4.1. Hydrogen Plant	
		5.4.2. CO ₂ Capture Plant (MDEA based Chemical Absorption Technology)	.50
		5.4.3. CO ₂ Compression and Dehydration	.51
		5.4.4. Cogen Plant (Power Island)	.51
		5.4.5. Demi-Water Plant/Cooling Water System	.51
		5.4.6. Balance of Plant (BoP)	.51
	5.5.	Process Flow Diagram (Hydrogen Plant and CO ₂ Capture System)	52
	5.6.	Heat and Mass Balance	.53
	5.7.	Plant Performance Data	54
	5.8.	Preliminary Utilities Consumption	
	5.9.	Preliminary Equipment List and Size of Main Components/Packages	56

IEAGHG	Revision No.: FINAL	
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 4 of 112

6.	Cas	e 2B	57
	6.1.	Basis of Design	57
	6.2.	Units Arrangement	58
	6.3.	Overall Block Flow Diagram	59
	6.4.	Process Description	60
		6.4.1. Hydrogen Plant	
		6.4.2. CO ₂ Capture Plant (Cryogenic and Membrane Separation Technolog	
		6.4.3. Cogen Plant (Power Island)	
		6.4.4. Demi-Water Plant/Cooling Water System	
		6.4.5. Balance of Plant (BoP)	
	6.5.	Process Flow Diagram (Hydrogen Plant and CO ₂ Capture System)	
	6.6.	Heat and Mass Balance	
	6.7.	Plant Performance Data	66
	6.8.	Preliminary Utilities Consumption	67
	6.9.	Preliminary Equipment List and Size of Main Components/Packages	68
7.	Cas	e 3	69
	7.1.	Basis of Design	69
	7.2.	Units Arrangement	70
	7.3.	Overall Block Flow Diagram	71
	7.4.	Process Description	72
		7.4.1. Hydrogen Plant	72
		7.4.2. CO ₂ Capture Plant (MEA based Chemical Absorption Technology)	
		7.4.3. CO ₂ Compression and Dehydration	
		7.4.4. Cogen Plant (Power Island)	
		7.4.5. Demi-Water Plant/Cooling Water System	
		7.4.6. Balance of Plant (BoP)	
	7.5.	Process Flow Diagram (Hydrogen Plant and CO ₂ Capture System)	
	7.6.	Heat and Mass Balance	
	7.7.	Plant Performance Data	78
	7.8.	Preliminary Utilities Consumption	79
	7.9.	Preliminary Equipment List and Size of Main Components/Packages	80

IEAGHG	Revision No.: FINAL		
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016	
		Sheet: 5 of 112	

8.	Eco	nomic	Evaluation	81
	8.1.	Invest 8.1.1. 8.1.2. 8.1.3.	ment Cost Estimates Definitions Estimating Methodology Summary of Results - TPC and TCR	
	8.2.		al Operating and Maintenance Cost	
	0.2.	8.2.1.	Variable Cost	
		8.2.2.	Fixed Cost	
		8.2.3.	Summary of Results – Annual O&M Cost	
	8.3.	Estim	ating the Levelised Cost of Hydrogen & CO ₂ Avoidance Cost	
		8.3.1.	Objective of the Economic Modelling	
		8.3.2.	Levelised Cost of Hydrogen (LCOH)	
		8.3.3.	CO ₂ Avoidance Cost (CAC)	
		8.3.4.	Macro-Economic Basis	
		8.3.5.	Summary of Results – Financial Analysis	100
	8.4.	Cost S	ensitivity to the Main Financial Parameters	102
		8.4.1.	Sensitivity to the Natural Gas Price	
		8.4.2.	Sensitivity to the Electricity (EE) Selling/Buying Price	104
		8.4.3.	Sensitivity to the Discount Rate	
		8.4.4.	Sensitivity to the CO ₂ Transport & Storage Cost	106
		8.4.5.	Sensitivity to the CO ₂ Emissions Cost	107
		8.4.6.	Cost Sensitivity to the Plant's Economic Life	108
An	nex I:	Crite	eria for Assessing the Techno-Economic Evaluation	109
An	nex I	I: Anr	ual Cash Flow	110
An	nex I	II: Bro	eakdown of Total Capital Requirements	111
An	nex I	V: An	nual Operating Expenditure	112

IEAGHG

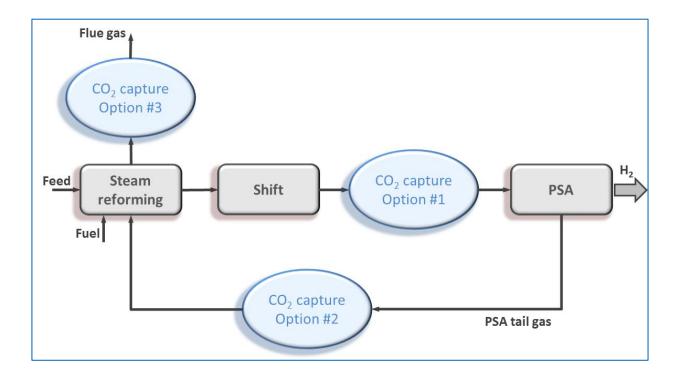
Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

December 2016 Sheet: 6 of 112

List of Abbreviations

AACE	Association for Advancement of Cost Engineering
AACE ACTL	Association for Advancement of Cost Engineering
	Alberta Carbon Trunk Line
ASTM	American Society for Testing and Materials
ASU	air separation unit
ATR	autothermal reformer
B.L.	battery limit
BFD	block flow diagram
BFW	boiler feed water
BHP	boiler horsepower
BoP	balance of plant
CAC	CO_2 avoidance cost
CCS	CO ₂ capture and storage
CCU	CO ₂ capture and utilisation
CWR	cooling water return
CWS	cooling water system
DRI	direct iron reduction
EBITDA	earnings before interest, taxes, depreciation and amortisation
H&MB	heat and mass balance
HC	hydrocarbon
HRU	hydrogen recovery unit
HTS	high temperature shift
HYCO	hydrogen and carbon monoxide (gas mixture)
LCOE	levelised cost of electricity
LCOH	levelised cost of hydrogen
LCOMeOH	
LCOU	levelised cost of urea
LHV	low heating value
LTS	low temperature shift
MAC	main air compressor
MDEA	mono-diethanol amine
MEA	mono-ethanol amine
MTS	medium temperature shift
MUG	make-up gas
NG	natural gas
NGCC	natural gas combined cycle
POX	partial oxidation
PSA	pressure swing adsorption
SMR	steam methane reformer
TCR	total capital requirement
TIC	total installed cost
TPC	total plant cost
USC-PC	ultra-supercritical pulverised coal fired boiler
VSA	vacuum swing adsorption
WHB	waste heat boiler
WWT	waste water treatment plant
·· ·· I	music muter rearrient prant


IEAGHG	Revision No.: FINAL		
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016	
		Sheet: 7 of 112	

1. Introduction

The objective of this document is to define and evaluate the techno-economics of deploying CO_2 capture in a standalone (merchant) SMR based Hydrogen Plant using Natural Gas as feedstock/fuel.

In order to evaluate performance and cost of the Hydrogen Plant with and without CO_2 capture, a base case is defined and used as reference plant for comparing the different CO_2 removal options. The reference plant does not include any CO_2 capture system and its characteristics are defined according to the information provided in the Annex I - Reference Document (Task 2) of this study.

The figure below illustrates the different possibilities where the CO_2 capture systems could be installed within the SMR based Hydrogen Plant.

IEAGHG

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

December 2016 Sheet: 8 of 112

The different CO_2 capture options investigated in this document comprise the following technologies:

- Case 1A: CO₂ Capture from Shifted Syngas using MDEA
- Case 1B: CO₂ Capture from Shifted Syngas using MDEA with H₂-Rich Fuel Firing Burners
- Case 2A: CO₂ Capture from PSA Tail Gas using MDEA
- Case 2B: CO₂ Capture from PSA Tail Gas using Low Temperature (Cryogenic) and Membrane Separation Technologies
- Case 3: CO₂ Capture from Flue Gas using MEA

The CO₂ capture technologies evaluated in this document are selected in line with the most of the relevant technologies that could be deployed in an SMR based Hydrogen Plants today.

The data relevant to the performance and cost of the Base Case and the CO_2 Capture Cases are used in evaluating the levelised cost of H_2 production or LCOH (taking into consideration the co-production of electricity) and the CO_2 avoidance cost.

IEAGHG	Revision No.: FINAL		
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016	
		Sheet: 9 of 112	

2. Base Case

2.1. Basis of Design

This section should be referred to Annex I - Reference Document (Task 2) - for the general plant design criteria and assumptions used in the development of the Base Case.

IEAGHG

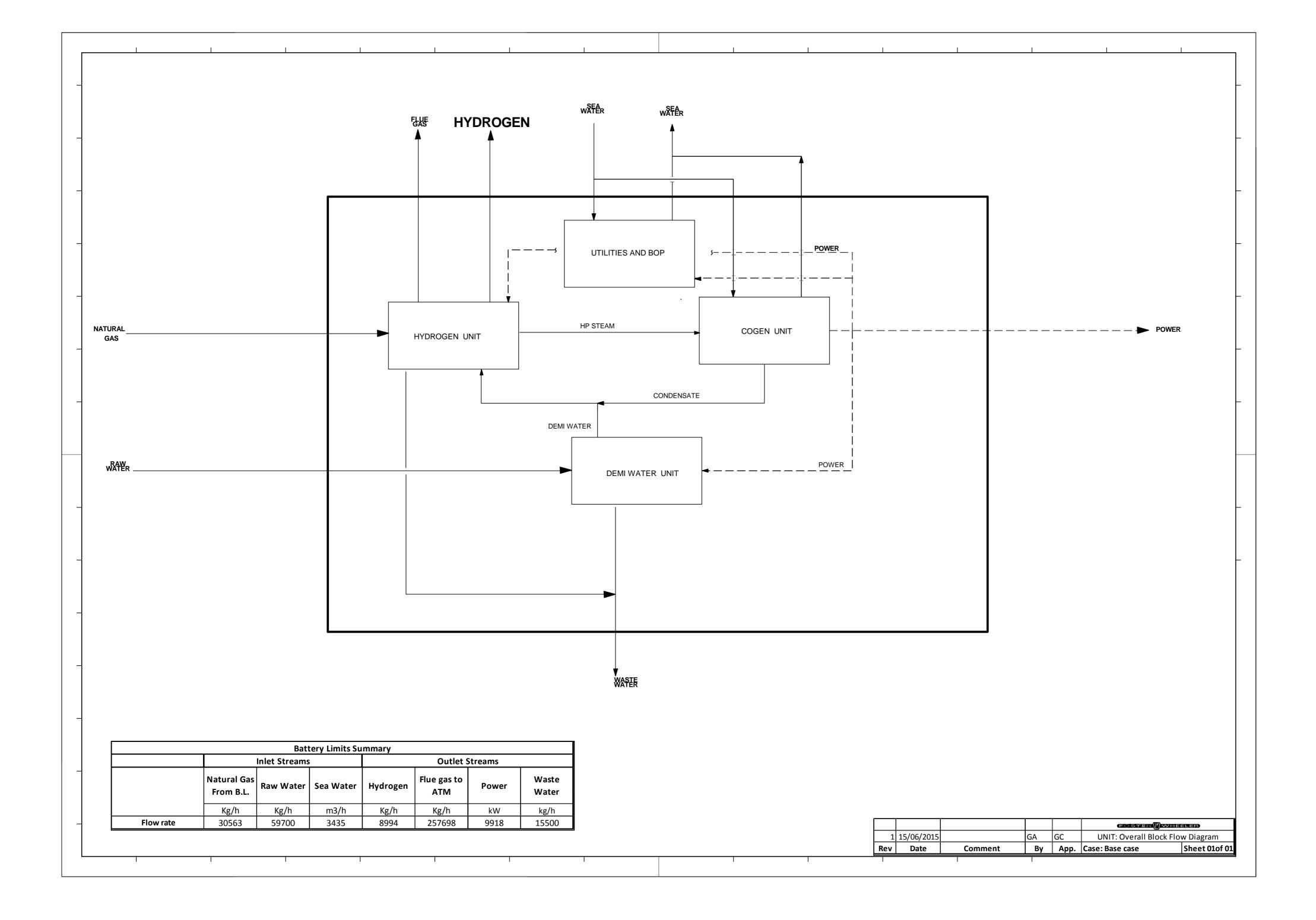
Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

December 2016

Sheet: 10 of 112

2.2. Units Arrangement


The units included in Base Case (Hydrogen Plant without CCS) are as follows:

- Hydrogen Plant
- Cogen Plant (Power Island)
- Demi-Water Plant
- Utilities and Balance of Plant (BoP), consisting of:
 - Cooling Water System
 - Instrument/Plant Air System
 - Nitrogen Generation Package
 - Flare System
 - Interconnecting (pipelines, electrical distributions, etc...)
 - Drain System
 - Buildings (Control Room, Laboratories, Electrical Sub-Station).

IEAGHG	Revision No.	: FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 11 of 112

2.3. Overall Block Flow Diagram

The BFD presented in the next page shows the different unit processes and the relevant inlet/outlet streams included in the Hydrogen Plant for the Base Case.

IEAGHG

Revision No.: FINAL Date: December 2016 Sheet: 12 of 112

2.4. Process Description

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant

This section includes the description of the key processes included in the Hydrogen Plant without CCS (Base Case).

2.4.1. <u>Hydrogen Plant</u>

The processes described in this section makes reference to the Process Flow Diagram of the SMR based hydrogen plant presented in Section 2.5.

Natural gas from B.L. is initially pre-heated to 135°C in the Feed Pre-heater (heated by the cooled shifted syngas leaving the BFW pre-heater in the syngas cooling section) and then laminated to 3.70 MPa. Part of the natural gas (as feedstock) is mixed with a slipstream of hydrogen (recycled) produced from the PSA unit and sent to the feedstock pre-treatment section, and the rest of the natural gas (as supplementary fuel) is sent to the steam reformer burners.

The pre-heated feedstock is further heated up to 370°C in the Feed Pre-Heater Coil situated in the convective section of the steam reformer.

The pre-heated feedstock is then sent to the desulphurisation unit (sulphur adsorber bed) to remove any H_2S present in the feed. It should be noted that the removal of any sulphur components is required to protect the downstream catalysts which could be poisoned by these impurities.

The treated (purified) feed gas is then mixed with a high pressure superheated steam in order to maintain a fixed overall steam to carbon ratio of around 2.7-2.8 (molar basis). The amount of steam added to the feed gas is regulated by a flow-ratio control. The superheated steam is produced from the cooling of the flue gas and syngas as described in the later part of this section.

The mixture of steam and feed gas is further heated in the Pre-Reformer Feed Pre-heater Coil located in the convective section of the steam reformer before being fed into the Pre-Reformer. The inlet temperature of feed gas going into the Pre-reformer is regulated by injecting BFW into the superheated steam in the Pre-reformer Steam De-superheater (generally situated upstream of the Pre-Reformer Feed Pre-heater Coil).

The Pre-Reformer (an adiabatic reactor) is mainly responsible for converting any heavy hydrocarbons in the feed to CH₄ and other co-products (i.e. CO₂, CO and H₂). Primarily, it takes over part of the overall reforming duty of the steam methane reformer (SMR) – i.e. by transferring some of the reformer duty from the SMR to the Pre-Reformer, the efficiency of the process is increased. The residual C₂+ in the product gas of the Pre-Reformer is regulated not to exceed 500 ppmv (max).

IEAGHG	Revision No.: FINAL	
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 13 of 112

The product gas of the Pre-Reformer is then mixed with a smaller second stream of high pressure superheated steam to adjust (fine tune) the steam to carbon ratio. The amount of steam added is also regulated by the flow ratio control.

The product gas from the Pre-Reformer is then further heated to it required operating temperature in the Reformer Pre-heater Coil which is also located in the convective section of the steam reformer before being fed into the main reformer tubes situated in the radiant section of the steam reformer furnace. The inlet temperature of the Reformer's feed gas is also controlled by injecting BFW in the Reformer Process Steam De-superheater (generally situated up-stream of the Reformer Pre-heat Coil).

In the radiant section of the Steam Reformer, the pre-heated mixture of feed gas and steam that is fed into the top of the catalyst filled tubes where steam reforming reaction occurs to produce an equilibrium mixture of H₂, CO, CO₂, CH₄ and H₂O. Generally, the residual CH4 in the product gas (un-shifted syngas) is in the range of 3.3 to 4% - dry molar basis. Also, it should be noted that the total amount of process steam added into the feed gas is always in excess of the stoichiometric requirement, in order to prevent any carbon formation on the catalyst.

In this study, the process design of the steam methane reformer is based on the Foster Wheeler Terrace Wall $^{\rm TM}$ reformer.

This features a radiant section consisting of a firebox(es) containing a single row of catalyst filled tubes. The tubes are heated by several burners in a terrace arrangement (i.e. 2 rows of burners in 2 levels firing upward parallel to the terraced wall). The hot flue gas leaving the furnace is exhausted into the convective section situated on top of the furnace.

The convective section has several coils which recovers the heat from the flue gas leaving the radiant section. This is responsible for heating various process gas and steam production. This consists of the following heat exchanger coils:

- Reformer Pre-heater Coil
- Pre-Reformer Feed Pre-heater Coil
- Steam Superheater Coil
- Feed Pre-heater Coil
- Steam Generation Coil

The furnace exit gas temperature is generally around 800 to 900oC. The steam methane reformer is typically designed to recover as much heat from the flue gas in the convective section whilst avoiding any dew point problems.

The overall heat balance of the steam reforming reactions is strongly endothermic, so heat has to be supplied to achieve the required conversion. This is mainly supplied by the combustion

IEAGHG	Revision No.	: FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 14 of 112

of the tail gas (coming from the PSA unit) and natural gas (as supplementary fuel – coming from the B.L.).

The combustion air is normally pre-heated by flue gas (leaving the convective section) in the gas-gas heat exchanger.

The syngas (un-shifted) or the product gas leaving the steam reformer tubes (normally at around 900-950°C) is fed into the Reformer Waste Heat Boiler (based on natural circulation steam generator) where it is cooled to 320°C. The recovered heat is used to generate high pressure saturated steam and this is sent to the superheater coil situated in the convective section of the steam reformer.

The cooled product gas leaving the steam reformer effluent is then fed into the Shift Converter, where the excess steam converts most of the CO to CO_2 and H_2 over a bed of catalyst.

In this study, the High Temperature Shift Reactor has been selected due to its robust performances and simple start-up and shutdown requirements. Residual CO from a HT-Shift Reactor is typically within the range of 2.5 to 3.5% (dry molar basis).

The shifted syngas from the Shift Reactor is cooled in a train of heat exchangers which includes:

- Shift Converter Waste Heat Boiler
- BFW Pre-heater
- Feed Pre-heater
- Condensate Pre-heater

The cooled shifted syngas (or Raw H_2) is then further cooled in the Raw H_2 air cooler and Demi-water Pre-heater before being fed into a Process Condensate Separator where the condensed water are separated out from the shifted syngas or Raw H_2 .

The Raw H₂ is fed into the PSA where the impurities are removed. This involves a cyclic adsorption process comprising of multiple adsorption beds (typically around 6 to 7 beds per train). In this beds, larger molecules (i.e. CH₄, CO₂, CO, etc...) or impurities are adsorbed to produce the pure H₂ product (with purity of >99.9+%). Typically, 85 to 90% of the H₂ in the PSA feed gas are recovered. This is sent to the B.L. and sold to the market; whilst a slipstream of this pure H₂ is re-compressed in the Hydrogen Recycle Compressor and sent back to front end of the Hydrogen Plant (i.e. mixed with the natural gas feedstock after the Feed Pre-heater).

The regeneration of the PSA adsorbent bed involves the desorption of the impurities and some residual H_2 to produce the PSA tail gas by depressurisation. This is sent to the SMR burners as the main fuel.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 15 of 112

The Hydrogen Plant produces High Pressure Saturated Steam at 4.23 MPa by recovering heat from the syngas or flue gas via the (a.) Reformer Waste Heat Boiler, (b.) Shift Converter Waste Heat Recovery and (c.) Convective Section Steam Generator. Around 75% of the saturated steam are generated from the Reformer Waste Heat Boiler.

The saturated steam is sent to the Steam Superheater Coil to produced high pressure superheated steam at 4.23 MPa and 395°C. Part of this steam is used by the pre-reformer and the main reformer; whilst the excess steam produced are exported to the COGEN Plant. A small portion of the export steam (< 1%) is delaminated and sent to the deaerator as supplementary LP steam for stripping.

The BFW required to generate the steam are derived from the (a.) process condensate collected from the Process Condensate Separator, (b.) condensate collected from the condenser of the steam turbine at the COGEN plant, and (c.) make-up BFW.

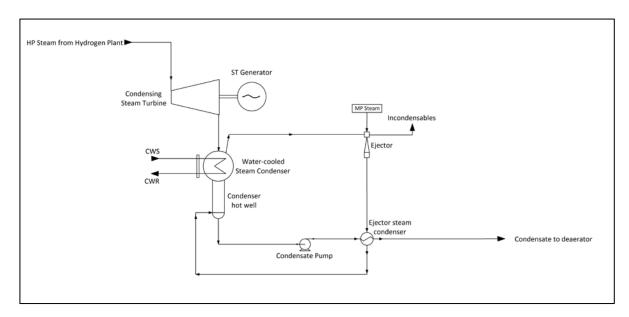
The make-up BFW are obtained from the demi-water plant. The required amount of demineralised water (as make-up BFW) are combined with the condensate collected from steam turbine. These are pre-heated in the Demi-Water Pre-Heater before being sent to the deaerator for the required chemical dosing and treatment. Similarly, the process condensate (condensed water collected from Process Condensate Separator) are pre-heated in the Condensate Pre-heater before being sent to the dearetor.

All the water collected contain some amount of impurities (i.e. dissolved CO_2 , O_2 , and other trace elements) which could be detrimental to the operation of the boiler and steam generators. These impurities are removed from the de-aerator. Impurities such as CO_2 and other trace elements are stripped using LP steam in the Deaerator.

LP steam produced in the Blowdown Drum is used as stripping medium in the Deaerator. This is supplemented with the LP steam delaminated from the HP steam (taken from the export steam to the Cogen Plant). The Deaerator vent, consisting mainly of steam, is discharged to the atmosphere.

Additionally, chemicals for pH control and oxygen scavenger are injected into the deaerated BFW before being pumped (via BFW pumps – one working and one spare) to the BFW Preheater and then sent to the Steam Drum.

From the Steam Drum, the BFW is sent to the Reformer Waste Heat Boiler and to the Shift Converter Waste Heat Boiler by gravity, and sent to the convective section Steam Generator Coil via the BFW Circulating Pumps (one working and one spare). In the steam drum, it is expected that the BFW will be treated with phosphate chemicals to minimise any corrosion and fouling.


IEAGHG	Revision No.	: FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 16 of 112

Also, as part of normal operation, the continuous and intermittent blowdown from the Steam Drum is expected. The blowdown steam is flashed into the Blowdown Drum where the LP steam is generated. This is sent to Deaerator for stripping out impurities in the BFW and condensates.

Hot condensate coming from the Blowdown Drum is cooled in Blowdown Cooler and is sent to sewer. This is regulated by the level control in the Blowdown Drum.

2.4.2. Cogen Plant (Power Island)

The Cogen Plant consists of one condensing type steam turbine driven by the superheated steam exported by the Hydrogen Plant. The electricity generated by the Cogen plant supplies the electricity required by the Hydrogen Plant and other utilities. Typically, surplus electricity could be generated and this is exported to the local grid. Condensate collected from the steam turbine are sent back to the Hydrogen Plant's BFW system. The schematic block flow diagram is shown in the figure below.

IEAGHG

Revision No.: FINAL Date: December 2016 Sheet: 17 of 112

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant

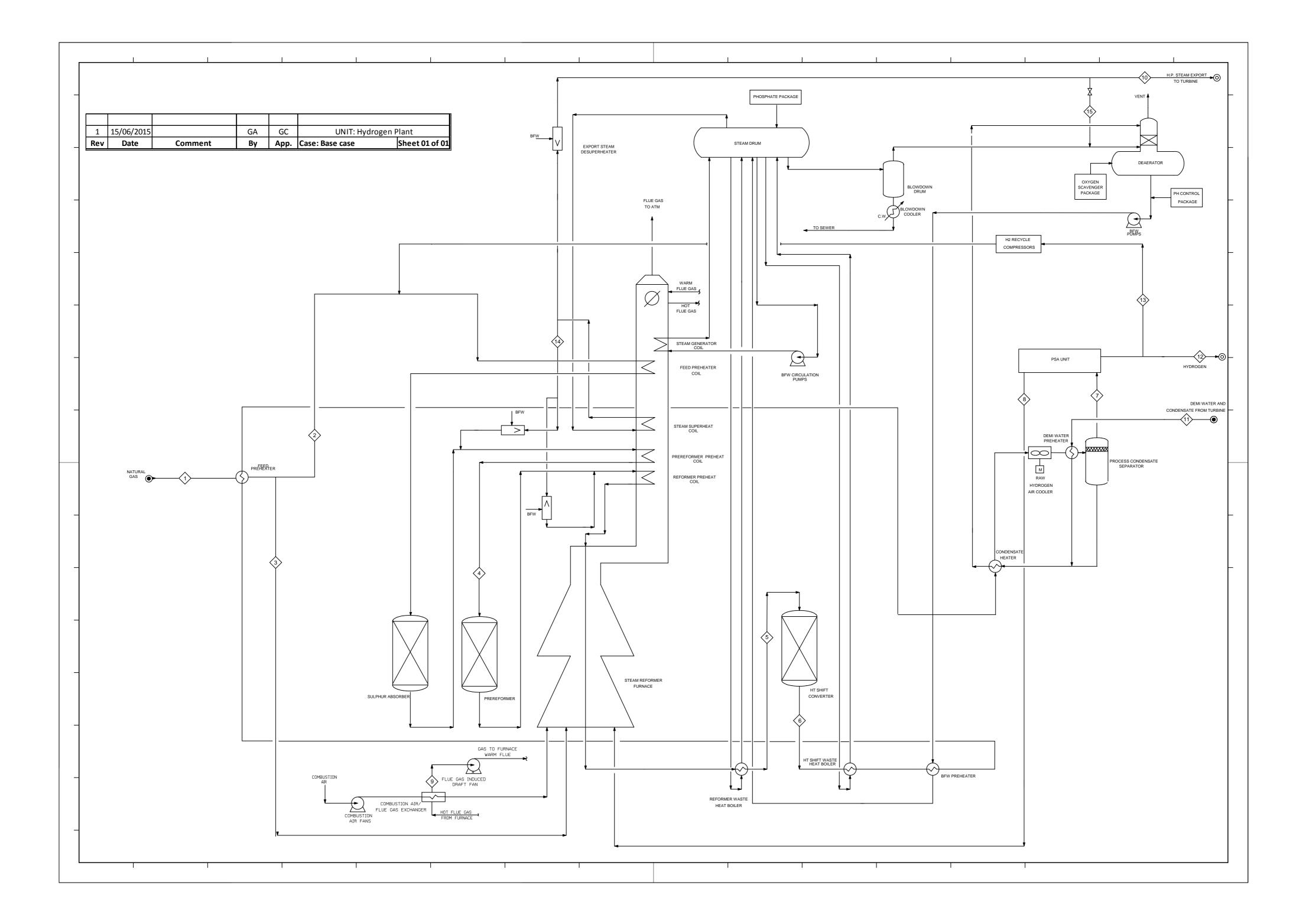
2.4.3. <u>Demi-Water Plant and Cooling Water System</u>

The Demi-Water required for the steam production is derived from the raw water treated in a Reverse-Osmosis system and electro-deionization system. The plant includes one raw water tank and one Demi-Water tank and relevant pumps, plus a potable water package and storage.

The treated Demi-Water is also used as cooling water in the closed circuit system (secondary system) used in process and machinery cooling. This cooling water is indirectly cooled by sea water using plate heat exchangers.

Sea water in once through system (primary system) is used directly by the steam turbine condenser.

2.4.4. Balance of Plant (BoP)


The operation of the whole unit is supported by additional utilities and facilities such as:

- Instrument/Plant Air System
- Nitrogen System
- Flare System
- Drain System
- Interconnecting
- Buildings (Control Room, Electrical Sub-station, Laboratories).

IEAGHG	Revision No.	: FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	t) H_2 Plant Date: December 20	
		Sheet: 18 of 112

2.5. Process Flow Diagram (Hydrogen Plant)

The PFD enclosed shows the different sections included in the Hydrogen Plant. These processes are described in Section 2.4.

Revision No.	: FINAL
Date:	December 2016
	Sheet: 19 of 112
	Revision No. Date:

2.6. Heat and Mass Balance

The Heat and Mass Balances reported in this section makes reference to the Process Flow Diagram presented in Section 2.5.

FOS	бтει		HEELI	ER					HEAT AND MATERIAL BALANCE Base case						
CLIENT:		IEA GHG							REV	DATE	ВҮ	СНКД	APP		
PROJECT NAME:		TECHNO-ECONO	MIC EVALUATION	OF H2 PRODUCTIO	N WITH CO2 CAP	TURE FOR INDUST	RY		0	April 2015	GA	CG	CG		
FWI CONTRACT:		1BD0840A							1	June 2015	GA	CG	CG		
LOCATION:		THE NETHERLAN	D												
		Т	T	1		1		Γ	1	Т	Γ	Γ			
Stream		1	2	3	4	5	6	7	8	9	10	11	12		
Description		Natural Gas From B.L.	Natural Gas feedstock to Hydrogen Plant	Natural Gas fuel to burners	Purified Feedstock to Pre-reformer	HTS Reactor Inlet	HTS Reactor Outlet	PSA inlet	PSA Tail gas	Flue gas to ATM	HP Steam export	Demi Water (make up) and steam turbine condensate	Hydrogen to B.L		
Temperature	°C	9	128	121	500	320	412	35	28	136	395	15	40		
Pressure	MPa	7.00	3.71	0.50	3.39	2.80	2.77	2.58	0.13	0.02	4.23	0.60	2.50		
Molar Flow	kmol/h	1696.6	1455.8	240.4	5514.0	8370.3	8370.3	6596.9	2106.3	8659.4	2556.0	5095.7	4461.5		
Mass Flow	kg/h	30563	26231	4332	98874	101667	101667	69711	60658	257698	46053	91800	8994		
Composition													<u> </u>		
CO2	mol/mol	0.0200	0.0200	0.0200	0.0053	0.0492	0.1283	0.1627	0.5095	0.2123	0.0000	0.0000	0.0000		
СО	mol/mol	0.0000	0.0000	0.0000	0.0000	0.1156	0.0366	0.0464	0.1454	(2)	0.0000	0.0000	0.0000		
Hydrogen	mol/mol	0.0000	0.0000	0.0000	0.0053	0.5171	0.5961	0.7563	0.2369	0.0000	0.0000	0.0000	0.9999+		
Nitrogen	mol/mol	0.0089	0.0089	0.0089	0.0023	0.0015	0.0015	0.0020	0.0062	0.6083	0.0000	0.0000	0.0000		
Oxygen	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0102	0.0000	0.0000	0.0000		
Methane	mol/mol	0.8900	0.8900	0.8900	0.2350	0.0238	0.0238	0.0302	0.0945	0.0000	0.0000	0.0000	0.0000		
Ethane	mol/mol	0.0700	0.0700	0.0700	0.0185	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Propane	mol/mol	0.0100	0.0100	0.0100	0.0026	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
n-Butane	mol/mol	0.0010	0.0010	0.0010	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
n-Pentane	mol/mol	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
H2O	mol/mol	0.0000	0.0000	0.0000	0.7307	0.2927	0.2137	0.0024	0.0076	0.1692	1.0000	1.0000	0.0000		
Contaminants:													<u> </u>		
H2S	ppm v	(1)											<u> </u>		
NOx	mg/Nm3								ļ	120 max					
Notes:		(1) For feedstock pu	urification section des	ign purposes 5 ppmv	of H2S have been a	assumed in NG to Hyd	rogen Plant								
		(2) 30 mg/Nm3 max					5								

FOS	TEP	₹ (T) ~~ F	HEELE	R				HEAT AND MATERIAL BALANCE Base case							
CLIENT:		IEA GHG				 	REV	DATE	BY	СНКД	APP				
PROJECT NAME:		TECHNO-ECONO	MIC EVALUATION	OF H2 PRODUCTIO	WITH CO2 CAPTURE F		0	April 2015	GA	CG	CG				
FWI CONTRACT:		1BD0840A					1	June 2015	GA	CG	CG				
			D					June 2015							
LOCATION:		THE NETHERLAN	D								<u> </u>				
Stream		13	14	15							<u> </u>				
Description		H2 Recycle	HP Steam to process	LP Steam To Deareator											
Temperature	°C	40	400	177							<u> </u>				
Pressure	MPa	2.51	4.29	0.44							+				
Molar Flow	kmol/h	29.1	5290.1	30.0											
Mass Flow	kg/h	59	95301	540											
Composition															
CO2	mol/mol	0.0000	0.0000	0.0000											
CO	mol/mol	0.0000	0.0000	0.0000											
Hydrogen	mol/mol	0.9999+	0.0000	0.0000											
Nitrogen	mol/mol	0.0000	0.0000	0.0000											
Oxygen	mol/mol	0.0000	0.0000	0.0000											
Methane	mol/mol	0.0000	0.0000	0.0000											
Ethane	mol/mol	0.0000	0.0000	0.0000											
Propane	mol/mol	0.0000	0.0000	0.0000											
n-Butane	mol/mol	0.0000	0.0000	0.0000											
n-Pentane	mol/mol	0.0000	0.0000	0.0000											
H2O	mol/mol	0.0000	1.0000	1.0000											
Contaminants:															
H2S	ppm v														
NOx	mg/Nm3					 									
											<u> </u>				
Notes:															

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 20 of 112

2.7. Plant Performance Data

The table below summarizes the energy performance and the CO_2 emissions relevant to the hydrogen production for the Base Case.

Plant Performance Data Base Case										
INLET STREAMS										
Natural Gas (as Feedstock)	t/h	26.231								
Natural Gas (as Fuel)	t/h	4.332								
Natural Gas (Total Consumption)	t/h	30.563								
Natural Gas LHV	MJ/kg	46.50								
Total Energy Input	MW	394.77								
OUTLET STREAMS		•								
Hydrogen Product to BL	t/h	8.994								
	Nm³/h	100,000								
Hydrogen LHV	MJ/kg	119.96								
Total Energy in the Product	MW	299.70								
POWER BALANCE										
Gross Power Output from the COGEN Plant	MWe	11.500								
Hydrogen Plant Power Consumption	MWe	-1.216								
COGEN Plant + Utilities + BoP Consumption	MWe	-0.366								
CO2 Capture Plant	MWe	NA								
CO2 Compression and Dehydration Unit	MWe	NA								
Excess Power to the Grid	MWe	9.918								
SPECIFIC CONSUMPTIONS										
Natural Gas (as Feedstock) GJ/100	$0 \text{ Nm}^3 \text{ H}_2$	12.197								
Natural Gas (as Fuel) GJ/100	$0 \text{ Nm}^3 \text{ H}_2$	2.014								
Feed + Fuel GJ/100	0 Nm ³ H ₂	14.212								
SPECIFIC EMISSIONS										
Specific CO2 Emission t/1000 Nm ³ H ₂										
	O Nm³ H₂	NA								
Overall CO2 Capture Rate (Case Specific)		NA								
Overall CO2 Capture Rate (as Compared to Base Case)		NA								

Revision No.:	FINAL
Date:	December 2016
	Sheet: 21 of 112
	Revision No.: Date:

2.8. Preliminary Utilities Consumption

This section presents the different utilities consumption (usage) of the Hydrogen Plant, Power Island, and others.

							2	19						
F	0	S	T	E	R			\sim	1-1	E	E	L	R	
					_	Lun	,						 	21

ESTIMATED UTILITY CONSUMPTIONS

CUSTOMER NAME	EAGHG								REV.	REV.0							SHEET
	TECHNO-ECONOMIC EVALUA	FION OF H2 PRODU	JCTION WIT	TH CO2 CA	PTURE		1_		BY	GA							1
FWI CONTRACT:	1BD0840 A						Base	Base case		CG							OF
LOCATION:	THE NETHERLAND	1		DATE	April 2015							1					
		ELECTRIC	C POWER		STEAM t/h		EFFLUENT	LOSSES	DMW	RAW WATER	COOLING	G WATER	SEA V	VATER	FUEL	INSTR. AIR	Nitrogen
		LOAD BHP	kW	LP	MP	HP	t/h	t/h	t/h	t/h	∆T (°C)	m³/hr	∆T (°C)	m³/hr	MMKcal/h	Nm³/h	Nm³/h
HYDROGEN PLANT			1216	0.00	0.00	-45.9	-1.71	-44.2 (2)	91.8 (1)	0.00	11	9.70			48.2	100	(250)
																	
	POWER ISLAND		19			45.9			45.0				7	3420			<u> </u>
			-11,500						-45.9								
		347				-13.8			59.7	11	-9.70	7	15	0.5	100	(250)	
	UTILITIES / BoP								-45.9							-200	(-500)
																	
	TOTAL		-9,918	0	0	0	-15.5	-44.2	0	59.7	-	0	-	3,435	48.7	0	0
		1			<u> </u>	1	(2) Losses	s the sum o s includes w	ater consum	condensate	action and d	eaerator ve			n in the hydro	gen plant	L

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 22 of 112

2.9. Preliminary Equipment List and Size of the Main Components/Packages

This section presents the preliminary list of equipment and main components/package relevant to the Base Case.

		PREL	IMINARY EQ	UIPMENT LIS	ST	REVISION	DATE	BY	СНКД	APP	SHEET
	I	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	1
(FOS	STER 🛛 WHEELER		TECHNO-ECONOM	IC EVALUATION OF I	H ₂ PRODUCTION						
		PROJECT NAME:	WITH CO2 CAPTUR								OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								8
		CASE	BASE CASE								-
		UNIT	HYDROGEN PLANT								-
		I									
			s	IZE	DESIGN	DESIGN					
ITEM No.	DESCRIPTION	TYPE	ID	L/H	PRESSURE	TEMPERATURE	MATERIAL	REM	IARKS		REV.
			mm	mm	MPa	°C					
DRUMS	•										
	FUEL GAS K.O. DRUM	VERTICAL				1					1
						1					-
	STEAM DRUM	HORIZONTAL									
	PROCESS CONDENSATE SEPARATOR	VERTICAL									-
	BLOWDOWN DRUM	VERTICAL									
	DEAERATOR	Stripping Section: Vertical									
		Storage Section: Horizontal									
											_
						1					-
			+		}						
						<u> </u>					_
			ļ								
		1	1			1		1			
WI -110/45				BASE: EQLIST0_00.>	<u>ат</u>				PRINTED ON:		24/06/2015

		PRE		UIPMENT LI	ST	REVISION	DATE	BY	CHKD	APP	SHEET
FOS	TER WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	2
	_	PROJECT NAME:	TECHNO-ECONOMI	C EVALUATION OF H	2 PRODUCTION						OF
		TROJECT NAME.	WITH CO2 CAPTUR	E							01
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								8
		CASE	BASE CASE								
		UNIT	HYDROGEN PLANT								
			s	IZE	DESIGN PRESSURE	DESIGN TEMPERATURE					
ITEM No.	DESCRIPTION	TYPE	ID	L/H			MATERIAL	REN	IARKS		REV.
			mm	mm	MPa	°C					
REACTORS											
	SULPHUR ABSORBERS	VERTICAL	2450	3650	4.075	400					
			-								
			_								
	PRE-REFORMER	VERTICAL	2100	3050	4.075	530					
						1					
	SHIFT CONVERTER	VERTICAL	3400	4400	3.080	430					
				Ì		Ì				1	
										1	
						+					
											_
				ļ		ļ				ļ	_
<u> </u>			1			1		1		1	
		1	1	1	1		1	1		1	

				UIPMENT LIS	ST	REVISION	DATE	BY	СНКД	APP	SHEET
(FOS	TER 🖉 🗤 HEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	3
		PROJECT NAME:	TECHNO-ECONOMI	C EVALUATION OF H	2 PRODUCTION						OF
			WITH CO2 CAPTUR	E					ļ	ļ	
		FWI CONTRACT:	1BD0840A						ļ	ļ	_
		LOCATION	THE NETHERLAND								8
		CASE	BASE CASE								
		UNIT	HYDROGEN PLANT								
			_								
			DUTY	AREA	DESIGN PRESSURE	DESIGN TEMPERATURE					
ITEM No.	DESCRIPTION	TYPE			SS / TS	SS / TS	MATERIAL	REM	IARKS		REV.
			MM kcal/h	m²	MPa	°C					
HEAT EXCHANGE	RS & COILS										
	FEED PRE-HEATER	SHELL & TUBE									
	HTS WASTE HEAT BOILER	SHELL & TUBE									
	BFW PRE-HEATER	SHELL & TUBE									
	CONDENSATE HEATER	SHELL & TUBE									
											<u> </u>
	DEMIWATER PRE-HEATER	SHELL & TUBE									
	BLOWDOWN COOLER	SHELL & TUBE									
											1
				İ	1	1	i	1		1	1

		PRI	ELIMINARY E	QUIPMENT L	IST	REVISION	DATE	BY	СНКД	APP	SHEET
FOS	TER 🕅 WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	4
	2		TECHNO-ECONOMIC	C EVALUATION OF H	2 PRODUCTION						
		PROJECT NAME:	WITH CO2 CAPTURE	=							OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								-
		CASE	BASE CASE								8
											-
		UNIT	HYDROGEN PLANT								
				1			r			T	
			DUTY	AREA	DESIGN PRESSURE	DESIGN TEMPERATURE					
ITEM No.	DESCRIPTION	TYPE	2011	0050	SS / TS	SS / TS	MATERIAL	REN	IARKS		REV
			MM kcal/h	m²	MPa	°C					
HEAT EXCHANGE	RS & COILS										
	-					+					
	COMBUSTION AIR / FLUE GAS EXCHANGER										
										1	
	STEAM GENERATOR COIL	COIL									
	STEAM SUPERHEATER COIL	COIL									
	FEED PREHATER COIL	COIL									
											_
	PRE-REFORMER FEED PREHEATER COIL	COIL									
										ļ	
	REFORMER FEED PREHEATER COIL	201									
	REFORMER PEED PREHEATER GOIL	COIL									
						1	<u> </u>				
											_
	REFORMER WASTE HEAT BOILER	SHELL & TUBE									
		OTICLE & TODE									
						1	<u> </u>				
						1					
						1					
WI -110/45			1	BASE: EQLIST0_00.XL	Т	1		1	PRINTED ON:	1	24/06/20

		PREL	IMINARY EQ	UIPMENT LIS	бт	REVISION	DATE	BY	CHKD	APP	SHEET
FOS	TER 🖉 WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	5
			TECHNO-ECONOM	IC EVALUATION OF H	1 2 PRODUCTION						05
		PROJECT NAME:	WITH CO2 CAPTUR	E							OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								8
		CASE	BASE CASE								°
		UNIT	HYDROGEN PLANT								
			s	IZE	DESIGN	DESIGN					
ITEM No.	DESCRIPTION	DUTY	WIDTH	LENGTH	PRESSURE	TEMPERATURE	MATERIAL	REM	ARKS		REV.
		MM Kcal/h	mm	mm	MPa	°C	HEADER/TUBES	-			
AIR COOLERS	•										
	RAW HYDROGEN AIR COOLER	1									
FIRED EQUIPMEN	Т										
	<u>-</u> 1										
	STEAM REFORMER FURNACE	82.63 (**)						(**) Radiant Duty			
	1										-
			1							1	
		1									
1											

		PRE	LIMINARY EC	UIPMENT L	IST	REVISION	DATE	BY	CHKD	APP	SHEET
FOS	TER 🕅 WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	6
		PROJECT NAME:	TECHNO-ECONOMI	C EVALUATION OF H	H 2 PRODUCTION						OF
			WITH CO2 CAPTUR	E							
		FWI CONTRACT:	1BD0840A								_
		LOCATION	THE NETHERLAND								8
		CASE	BASE CASE								_
		UNIT	HYDROGEN PLANT							ļ	
ITEM No.	DESCRIPTION	ТҮРЕ	FLOW	HEAD	DESIGN PRESSURE	Brake Power	MATERIAL	REM	ARKS		REV.
			m³/h	m	MPa	kW	CASING/IMPELLER				
PUMPS											
	BFW CIRCULATION PUMPS	Centrifugal									
	BFW FEED PUMPS	Centrifugal						Two pumps electrical m	notor driven		
											1
											-
											+
											1
			1								1
											1
											1
											1
FWI -110/45	1	1	1	BASE: EQLIST0_00.X	LT	1	L	1	PRINTED ON:	1	24/06/201

		PRELIMINARY EQUIPMENT LIST			REVISION	DATE	BY	CHKD	APP	SHEET	
FOS	TER WWHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	7
		PROJECT NAME:	TECHNO-ECONOMIC WITH CO2 CAPTURE	C EVALUATION OF H	2 PRODUCTION						OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								
		CASE	BASE CASE								8
		UNIT	HYDROGEN PLANT								
								-			
			FLOW	PRESSURE	DESIGN	Brake Power	MATERIAL				
ITEM No.	DESCRIPTION	TYPE		INLET/OUTLET	PRESSURE			REN	IARKS		REV.
			Nm³/h	MPa	MPa	kW	CASING/IMPELLER				
COMPRESSORS &	BLOWERS										
	RECYCLE HYDROGEN COMPRESSORS PACKAGE	Reciprocating	653	2.505 / 4.001	4.40	16					
	COMBUSTION AIR BLOWERS							Two Blowers: one ope	erating, one spare		
	FLUE GAS BLOWERS										
											+
											+
											1
											<u> </u>
l				BASE: EQLIST0_00.XI					PRINTED ON:		24/06/2015

	_	PRE		UIPMENT LI	ST	REVISION	DATE	BY	СНКД	APP	SHEET
FOS	STER WWHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	8
	2		TECHNO-ECONOMI	C EVALUATION OF H	2 PRODUCTION						
		PROJECT NAME:	WITH CO2 CAPTUR	E							OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								
		CASE	BASE CASE								8
		UNIT	HYDROGEN PLANT	г							
						•			•		
		1				1		1			
			FLOW	PRESSURE	DESIGN	DESIGN					
ITEM No.	DESCRIPTION	TYPE	12011	INLET/OUTLET	PRESSURE	TEMPERATURE	MATERIAL	REN	IARKS		REV.
			Nm³/h	MPa	MPa	°C					
MISCELLANEA											
	STEAM VENT SILENCER										
	REFORMER STEAM DESUPERHEATER										
			_								
	PREREFORMER STEAM DESUPERHEATER										
	PHOSPHATE PACKAGE										
	EXPORT STEAM DESUPERHEATER										
	OXYGEN SCAVENGER PACKAGE										
	pH CONTROL PACKAGE										
	PSA UNIT		100661	2.58/2.51 (H2 side)	2.8	80					
FWI -110/45		<u> </u>		BASE: EQLIST0_00.XI	<u> </u> _т				PRINTED ON:	1	24/06/2015

(J)	PR	ELIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER	CLIENT:	IEA GHG	0	April 2015	NF	GC	GC	1
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	BASE CASE						- '
	UNIT	POWER ISLAND						1

			SIZE	PRESSURE	DESIGN PRESSURE	DESIGN TEMPERATURE			
ITEM No.	DESCRIPTION	TYPE		INLET/OUTLET	PRESSURE	TEMPERATURE	MATERIAL	REMARKS	RE
			-	MPa	MPa	°C			
OWER ISLAND									
	STEAM TURBINE AND GENERATOR PACKAGE								
	Including								
	STEAM TURBINE	Condensing type	12 MWe					Including: lube oil system;	
								Cooling system; Hydraulic control system; Seal system	
								Gland condenser	
	STEAM TURBINE GENERATOR		15 MVA					Including relevant auxiliaries	
	STEAM TURBINE BYPASS SYSTEM								
	STEAM CONDENSER PACKAGE		24 x 10 ⁶ kcal/h	Condensing pressure: 8 kPa				Including: Condenser hotwell	
								Ejector Start-up Ejector	
	CONDENSATE PUMP	Centrifugal	60 m3/h x 80 m 22 kW					One operating one spare	
									1
			1						1

	PRELIMINARY EQUIPMENT LIST		REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER	CLIENT:	IEA GHG	0	April 2015	NF	GC	GC	1
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	BASE CASE						3
	UNIT	UTILITIES AND BOP						1

ITEM No.	DESCRIPTION	ТҮРЕ	SIZE	PRESSURE	DESIGN PRESSURE	DESIGN TEMPERATURE	MATERIAL	REMARKS	REV.
			-	MPa	MPa	°C			
COOLING WATER	SYSTEM								
	SEA WATER PUMPS	Centrifugal	3500 m3/h x 25 m 335 kWe					One operating one spare	
	SEA WATER / CLOSED COOLING WATER EXCHANGER		125 kWth						_
	CLOSED COOLING WATER PUMPS							One operating one spare	
	CLOSED COOLING WATER CIRCUIT EXPANSION DRUM								
	CORROSION INHIBITOR PACKAGE								
INSTRUMENT / PL	ANT AIR SYSTEM								
								including:	
	AIR COMPRESSOR PACKAGE							- Air Compressor - Inter/after coolers	
								- KO Drums (including final KO drum)	
	AIR DRYING PACKAGE	Adsorption bed	200 Nm3/h					including:	
		/ doorpalor bod	200 1110/1					- Adsorbent Bed (with automatic regenaration system) - Regeneration Electrical Heater	
								- Pre Filters - After Filters	-
	IA RECEIVER DRUM	vertical							
WI -110/45				BASE: EQLIST0_00.XL				PRINTED ON:	24/06/2

(III)	PRELIMINARY EQUIPMENT LIST		REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER	CLIENT:	0	April 2015	NF	GC	GC	2	
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	BASE CASE						3
	UNIT	UTILITIES AND BOP						1

ITEM No.	DESCRIPTION	ТҮРЕ	SIZE	PRESSURE INLET/OUTLET	DESIGN PRESSURE	DESIGN TEMPERATURE	MATERIAL	AL REMARKS		REV
			-	MPa	MPa	°C				
RAW / DEMI WATE	ER SYSTEM									
	RAW WATER TANK	Fixed roof						12 h storage		
	RAW WATER FILTRATION PACKAGE		65 m3/h							
	POTABLE WATER TANK	Fixed roof						12 h storage		
	POTABLE WATER PACKAGE									
	DEMI WATER PLANT FEED PUMPS		65 m3/h x 25 m 7.5 kW					One operating, one spare		
	DEMI WATER PACKAGE UNIT		50 m3/h DW production					Including: - Multimedia filter - Reverse Osmosis (RO) Cartidge filter		
								- Electro de-ionization system		
			50 m3/h x 50 m							
	DEMIWATER PUMPS		15 kW					One operating, one spare		
	DEMIWATER TANK	Fixed roof						12 h storage		
										+
										+
										+
										+
										+

(III)	PRELIMINARY EQUIPMENT LIST CLIENT: IEA GHG		REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER			0	April 2015	NF	GC	GC	3
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	BASE CASE						3
	UNIT	UTILITIES AND BOP						1

ITEM No.	DESCRIPTION	TYPE	SIZE	PRESSURE	DESIGN PRESSURE	DESIGN TEMPERATURE	MATERIAL	REMARKS	REV.
			-	MPa	MPa	°C			
NITROGEN GENE	RATION PACKAGE								
	NITROGEN PRODUCTION PACKAGE		500 Nm3/h					Including: - Intake Air Filter	
								- Air Compressor - Air Receiver	
								- Inter/after coolers - KO Drums - Molecular Sieve Water Absorber (Air Dryer)	
								Chillor Lipit	
								One Expansion Turbine One Cryogenic Distillation Column One Main Heat Exchanger	
								· · · · · · · · · · · · · · · · · · ·	
	LIQUID NITROGEN STORAGE AND VAPORISATION PACKAGE		500 Nm3/h					Including:	
								- Liquid Nitrogen Storage tank - Nitrogen Vaporizer (Air Fin Type) - Nitrogen heater (electrical)	
	GASEOUS NITROGEN BUFFER VESSEL								
	GASEOUS NIIROGEN BUFFER VESSEL								
FLARE SYSTEM									
	FLARE KO DRUM	Horizontal							
	FLARE PACKAGE		Max relief flowrate 102,000 kg/h; MW:12					Including riser; tip, seal drum	
	FLARE KO DRUM PUMPS	Centrifugal						One operating one spare	
BoP									
	INTERCONNECTING								
	BUILDING (CONTROL ROOM, ELECTRICAL SUBSTATION, LAB)								
	DRAIN SYSTEM								
	FIRE FIGHTING								
	ELECTRICAL SYSTEM							Up to generator terminals	

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 23 of 112

3. Case 1A

3.1. Basis of Design

This section should be referred to Annex I - Reference Document (Task 2) - for the general plant design criteria and assumptions used in the development of Case 1A (Hydrogen Plant with CO₂ Capture from Syngas using MDEA).

IEAGHG

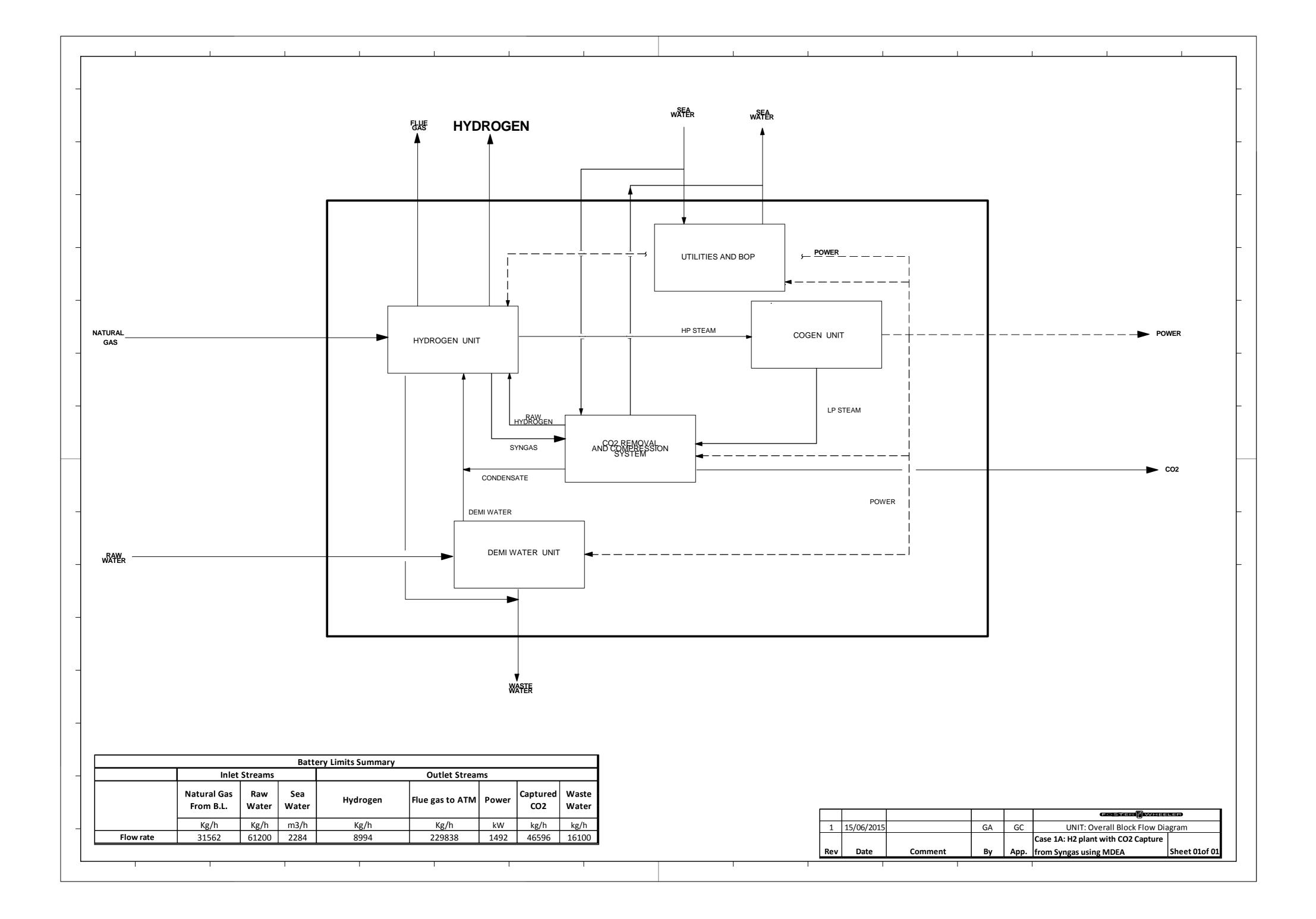
Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

Sheet: 24 of 112

December 2016

3.2. Units Arrangement


The units included in Case 1A (Hydrogen Plant with CO₂ Capture from Syngas using MDEA) are as follows:

- Hydrogen Plant
- Cogen Plant (Power Island)
- CO₂ Capture System (Capture from Shifted Syngas using MDEA)
- CO₂ Compression and Dehydration Unit
- Demi-Water Plant
- Utilities and Balance of Plant (BoP), consisting of:
 - Cooling Water System
 - Instrument/Plant Air System
 - Nitrogen Generation Package
 - Flare System
 - Interconnecting
 - Drain System
 - Buildings (Control Room, Laboratories, Electrical Sub-Station).

Revision No.:	FINAL
Date:	December 2016
	Sheet: 25 of 112

3.3. Overall Block Flow Diagram

The BFD presented in the next page shows the different unit processes and the relevant inlet/outlet streams included in the Hydrogen Plant for Case 1A (with CO₂ Capture from Syngas using MDEA).

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 26 of 112

3.4. Process Description

This section includes the description of the key processes included in the Hydrogen Plant with CO₂ capture from Syngas using MDEA (Case 1A)

3.4.1. Hydrogen Plant

The processes described in this section makes reference to the Process Flow Diagram of the SMR based hydrogen plant with CO_2 capture from the shifted syngas presented in Sheet 1 of Section 3.5.

The main processes involving the hydrogen production are described in Section 2.4.1.

The Hydrogen Plant of Case 1A (as compared to the Base Case) has a couple of differences and these include:

- Higher Natural Gas consumption (an increase of ~4% wt. as compared to the Base Case) due to the additional supplementary fuel needed to produce the steam required by the CO₂ capture plant.
- The cooled Raw H₂ (or shifted syngas) leaving the Process Condensate Separator is sent to the CO₂ capture plant (instead of being fed into the PSA unit for the Base Case).
- The volume of the gas handled by the PSA unit is smaller (as compared to the Base Case). This is due to the removal of the CO₂ in the capture plant.
- The convective section of the steam reformer which recovers the heat from the flue gas leaving the radiant section includes a steam generation coil and a steam superheater coil with larger duty as compared to the Base Case and an additional BFW pre-heating coil. This is to provide the additional steam generation capacity required to meet the additional steam demand used in the solvent regeneration of the CO₂ capture plant.
- The burners of the SMR will be handling fuel gas with higher LHV (or Wobbe Index) due to the reduced amount CO₂ in the PSA tail gas and higher Natural Gas consumed as supplementary fuel.

3.4.2. <u>CO2 Capture Plant (MDEA based Chemical Absorption Technology)</u>

The processes described in this section makes reference to the Process Flow Diagram of the CO_2 capture plant presented in Sheet 2 of Section 3.5.

Revision No.:	FINAL
Date:	December 2016
	Sheet: 27 of 112
	Revision No.: Date:

The Raw H_2 (or shifted syngas) leaving the Process Condensate Separator is fed into the Absorber Column where CO_2 is washed out from the syngas by a counter-current flow of lean solvent. The treated Raw H_2 (or washed syngas), now containing around 0.26% CO_2 , exits at the top of the absorber column. The rich solvent is collected at the bottom of the column and fed into a Flash Drum (to allow the release and recovery of the co-absorbed hydrocarbons in the rich solvent).

The vapour (flashed gas) released from the Flash Drum is sent to the burners as additional fuel to the steam reformer. Whilst, the rich solvent leaving the bottom of the Flash Drum is sent to the Lean/Rich Heat Exchanger to be heated by the incoming stream of hot lean solvent coming from the Stripper's Reboiler. The hot rich solvent leaving the Lean/Rich Heat Exchanger is then fed into the top of the Stripper Column.

In the Stripper Column, the rich solvent flowing down from the top of the column is stripped of its CO₂ by the vapour generated from the Stripper's Reboiler.

The Stripper's Reboiler generates vapour (mainly steam) by re-boiling the lean solvent coming from the Stripper bottom. The vapour is then sent back to the bottom of the Stripper Column and travels upward to strip the CO₂ from the solvent flowing downward.

The Stripper's Reboiler is heated by the LP steam coming from the Back Pressure Steam Turbine of the Cogen Plant. The condensate recovered from the reboiler is sent back to the Hydrogen Plant's BFW system.

The overhead gas from the Stripper Column is then sent to the Stripper's Condenser where the steam in the overhead gas are condensed, collected and returned as a reflux to the Stripper Column.

The CO_2 rich gas from the Stripper's Condenser is then sent to the CO_2 compression and dehydration unit.

3.4.3. <u>CO2 Compression and Dehydration</u>

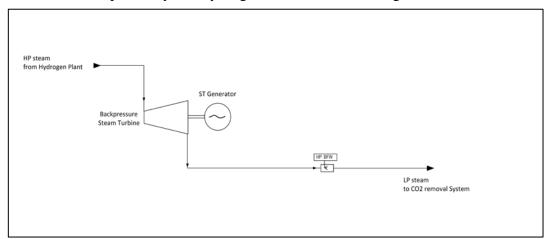
The processes described in this section makes reference to the Process Flow Diagram of the CO_2 compression and dehydration unit presented in Sheet 3 of Section 3.5.

The CO₂ Compression and Dehydration unit includes the Compressor, Knock-out Drums, Inter-Stage Coolers, Dehydration Unit and Liquid CO₂ pump.

The overhead gas (mainly CO_2) leaving the Stripper's Condenser is compressed to a pressure of 8 MPa by a single train seven-stage centrifugal compressor. The CO_2 compressor is an integrally geared and electrically driven machine which is equipped with anti-surge control,

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 28 of 112

vent, inter-stage coolers and knock-out drums in between stages and condensate draining facilities as required.


There is one Inter-stage Coolers installed after each compression stage. Seawater is used as cooling medium. The condensed water in the inter-cooler is separated from the gas in the knock-out drum (this is installed after each inter-coolers up to the fourth stage). The gas leaving the fifth inter-stage cooler is then fed into the dehydration unit.

The dehydration unit is based on a molecular sieve / activated alumina adsorbent dryer. The dryer is designed to operate and produce CO_2 product with a dew point temperature of -40°C. The dryer consists of two bed of adsorbents for every train of compressor. During normal operation, one bed is operational and the other bed (saturated with water) is regenerated. The bed are regenerated by the dry product gas (ca. 10% taken from the dried product gas after the dryer). The regeneration gas (now saturated with water) is recycled back after the third stage compression.

The final two compression stages downstream of the dehydration unit increases the CO_2 pressure to 8 MPa. This is design to operate slightly higher than the critical pressure of pure CO_2 (at 7.4 MPa) in order to prevent any risk of 2 phase flow due to the presence of non-condensable gases. After the being cooled, the dried compressed CO_2 (dense phase) is pumped and delivered to the battery limit at a pipeline pressure of 11 MPa.

3.4.4. Cogen Plant (Power Island)

The Cogen Plant consists of a Back Pressure Steam Turbine fed with the high pressure superheated steam exported by the Hydrogen Plant as shown in figure below.

The high pressure steam is expanded in the steam turbine to produce electricity and generates the low pressure steam (at 0.44 MPa and 177°C). The LP steam is then sent to the Stripper's Reboiler with a small part being fed to the deaerator (as supplementary steam for stripping).

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 29 of 112

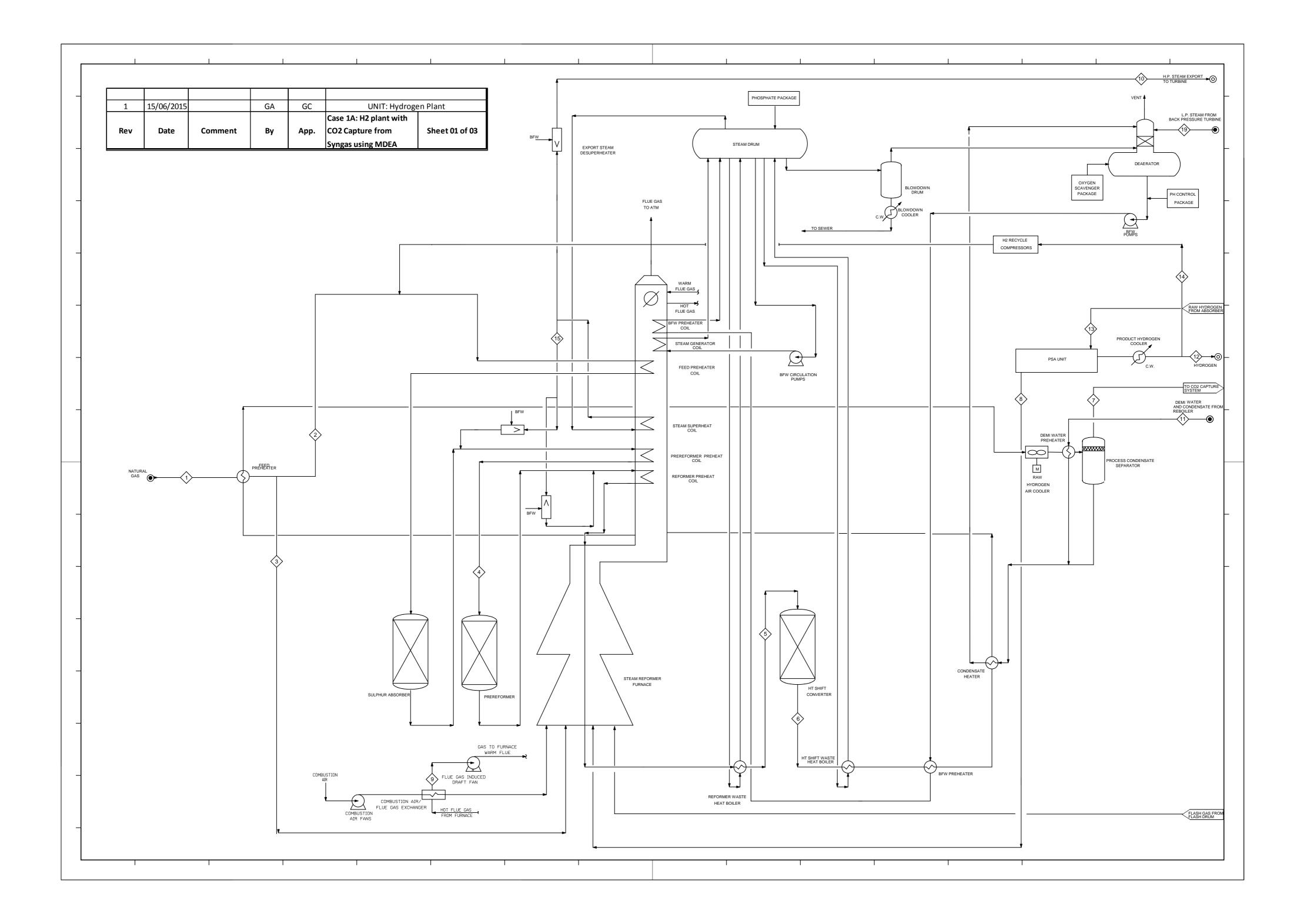
The electricity produced by the Cogen Plant is used by the Hydrogen Plant, CO_2 capture plant, CO_2 compression and dehydration unit and other utilities. A small surplus is exported to the grid.

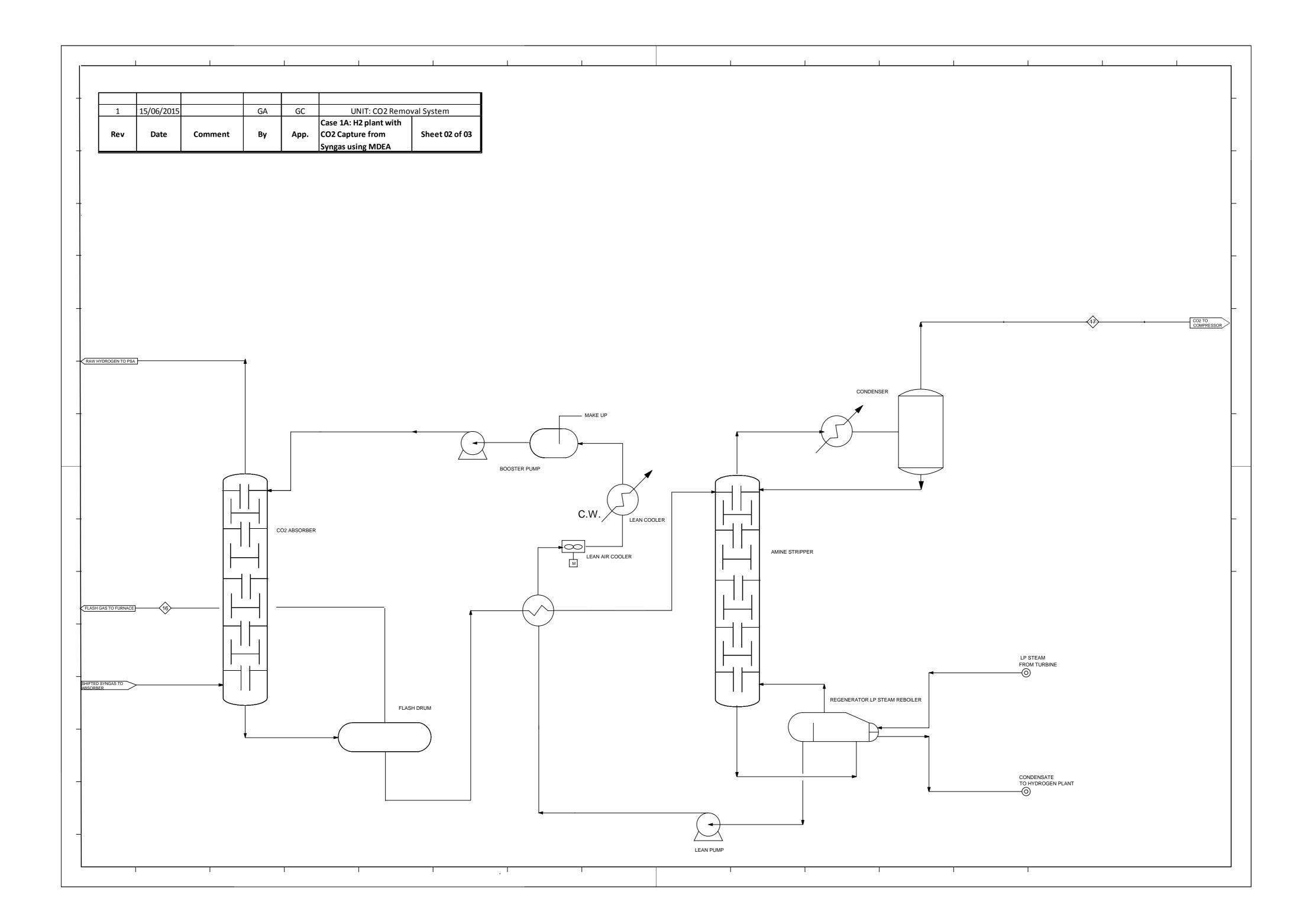
3.4.5. <u>Demi-Water Plant and Cooling Water System</u>

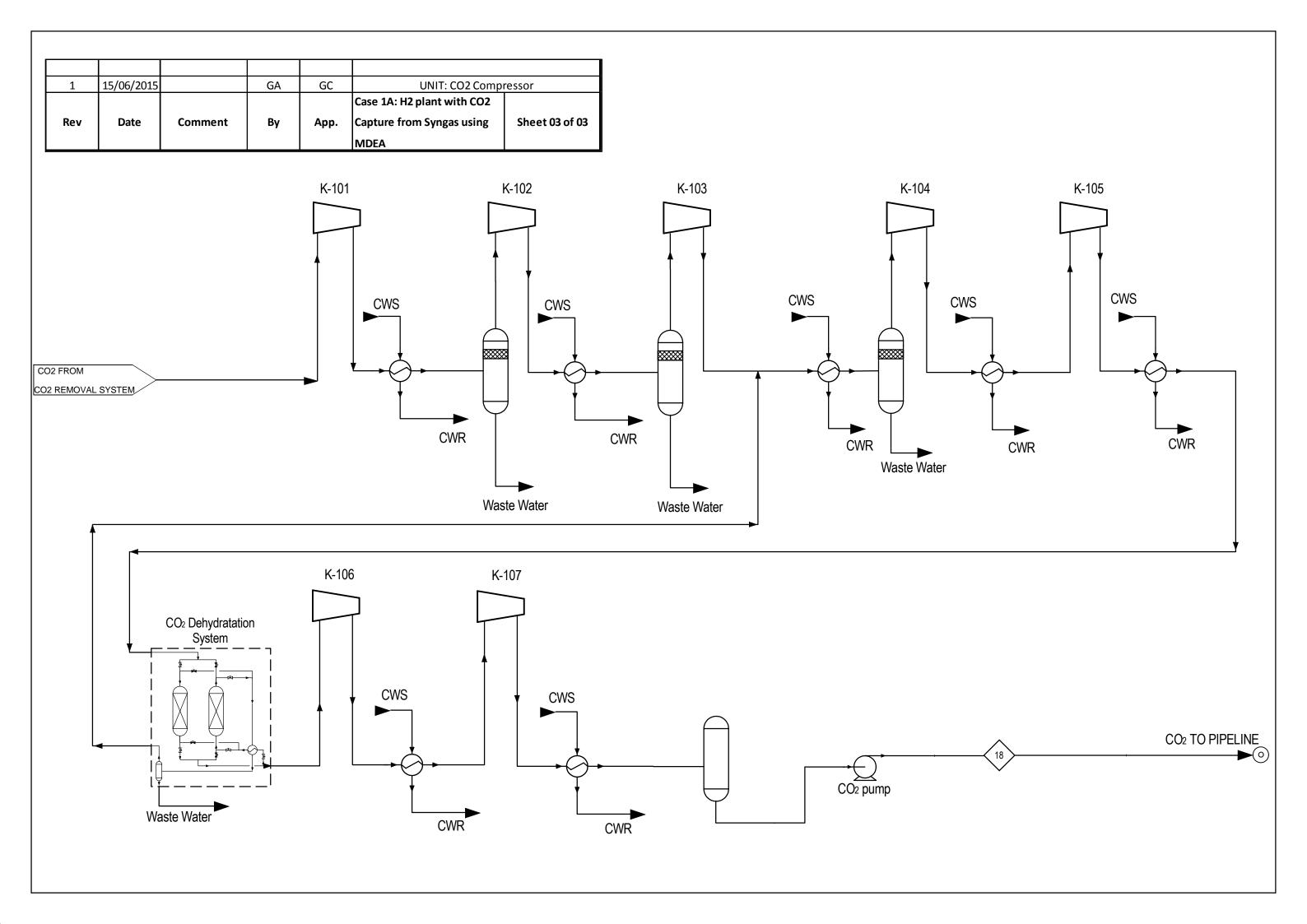
The Demi-Water and Cooling Water Systems of the plant are described in Section 2.4.3.

Once through seawater cooling (primary system) is used in the CO_2 Compression and Dehydration Unit. Whilst, the closed circuit cooling system (secondary system) is used by the CO_2 Capture Plant (i.e. trim coolers, condenser, et. al.).

3.4.6. Balance of Plant (BoP)


The operation of the whole plant is supported by additional utilities and facilities. These are presented in Section 2.4.4.


IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 30 of 112


3.5. Process Flow Diagram (Hydrogen Plant and CO₂ Capture System)

The PFDs enclosed shows the different processes included in the Hydrogen Plant, the CO_2 Capture Plant and the CO_2 Compression and Dehydration Unit.

The processes involving the Hydrogen Plant are described in Section 2.4. The changes made to the hydrogen plant (as compared to the Base Case) are described in Section 3.4. The processes involving the CO_2 capture plant and the CO2 Compression and Dehydration Unit are also described in Section 3.4.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 31 of 112

3.6. Heat and Mass Balance

The heat and mass balances reported in this section makes reference to the Process Flow Diagram presented in Section 3.5.

FOSTER	R	WHEELER

FOST	ER	₩н	EELER	3	FOSTER VHEELER										
CLIENT:		IEA GHG							REV	DATE	ВҮ	СНКД	APP		
PROJECT NAME:		TECHNO-ECONO	MIC EVALUATION	OF H2 PRODUCTIC	N WITH CO2 CA	PTURE			0	April 2015	GA	CG	CG		
FWI CONTRACT:		1BD0840A							1	June 2015	GA	CG	CG		
LOCATION:		THE NETHERLAN	D												
-		1	1	-		· · · · · ·			-	1					
Stream		1	2	3	4	5	6	7	8	9	10	11	12		
Description		Natural Gas From B.L.	Natural Gas feedstock to Hydrogen Plant	Natural Gas fuel to burners	Purified Feedstock to Pre-reformer	HTS Reactor inllet	HTS Reactor Outlet	Raw Syngas to CO2 capture system	PSA Tail gas	Flue gas to ATM	HP Steam export	Demi Water (make up) and condensate from Stripper reboiler			
Temperature	°C	9	127	120	500	320	412	35	28	135	396	15	40		
Pressure	MPa	7.00	3.73	0.50	3.41	2.82	2.79	2.60	0.13	0.02	4.23	0.60	2.50		
Molar Flow	kmol/h	1751.6	1457.5	294.1	5520.5	8376.6	8376.6	6598.7	1047.6	8276.0	3617.7	6142.1	4461.5		
Mass Flow	kg/h	31562	26262	5300	98991	101787	101787	69749	14055	229838	65172	110650	8994		
Composition													<u> </u>		
CO2	mol/mol	0.0200	0.0200	0.0200	0.0053	0.0493	0.1282	0.1627	0.0139	0.1017	0.0000	0.0000	0.0000		
CO	mol/mol	0.0000	0.0000	0.0000	0.0000	0.1154	0.0365	0.0463	0.2915	(2)	0.0000	0.0000	0.0000		
Hydrogen	mol/mol	0.0000	0.0000	0.0000	0.0053	0.5167	0.5957	0.7561	0.4763	0.0000	0.0000	0.0000	0.9999+		
Nitrogen	mol/mol	0.0089	0.0089	0.0089	0.0023	0.0015	0.0015	0.0020	0.0124	0.6947	0.0000	0.0000	0.0000		
Oxygen	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0119	0.0000	0.0000	0.0000		
Methane	mol/mol	0.8900	0.8900	0.8900	0.2350	0.0240	0.0240	0.0305	0.1918	0.0000	0.0000	0.0000	0.0000		
Ethane	mol/mol	0.0700	0.0700	0.0700	0.0185	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Propane	mol/mol	0.0100	0.0100	0.0100	0.0026	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
n-Butane	mol/mol	0.0010	0.0010	0.0010	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
n-Pentane	mol/mol	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
H2O	mol/mol	0.0000	0.0000	0.0000	0.7307	0.2931	0.2141	0.0024	0.0140	0.1916	1.0000	1.0000	0.0000		
Contaminants:													<u>+</u>		
H2S	ppm v	(1)													
NOx	mg/Nm3									120 max					
Notes:		(1) For toodatask as			of U2C hours have		rogon Digat								
		(1) For feedstock pt (2) 30 mg/Nm3 max		ign purposes 5 ppmv	or m25 have been a	assumed in NG to Hyd	rogen Plant								

LIENT:		IEA GHG							REV	DATE	BY	CHKD	APP
ROJECT NAME:		TECHNO-ECONO	MIC EVALUATION	OF H2 PRODUCTIO	ON WITH CO2 CAI	PTURE			0	April 2015	GA	CG	CG
WI CONTRACT:		1BD0840A							1	June 2015	GA	CG	CG
DCATION:		THE NETHERLAN	D								•	+	
								I					1
ream		13	14	15	16	17	18	19					
Description		Raw Hydrogen to PSA	Recycle hydrogen	High pressure Steam to process	Flash gas to Steam Reformer Furnace	CO2 from capture plant to Compressor	CO2 to Pipeline	LP Steam from BP Turbine to Deareator					
emperature	°C	41	40	400	71	49	24	177					
essure	MPa	2.58	2.51	4.29	0.60	0.29	11.00	0.44					
olar Flow	kmol/h	5538.2	29.1	4162.1	4.4	1104.5	1059.4	35.6					
ass Flow	kg/h	23108	59	74981	83	47411	46600	642					
Composition													
CO2	mol/mol	0.0026	0.0000	0.0000	0.3522	0.9586	0.9994	0.0000					
CO	mol/mol	0.0551	0.0000	0.0000	0.0295	0.0000	0.0000	0.0000					
Hydrogen	mol/mol	0.9009	0.9999+	0.0000	0.5353	0.0004	0.0004	0.0000					
Nitrogen	mol/mol	0.0023	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000					
Oxygen	mol/mol	0.0363	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
Methane	mol/mol	0.0000	0.0000	0.0000	0.0376	0.0001	0.0001	0.0000					
Ethane	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
Propane	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
n-Butane	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
n-Pentane	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
H2O	mol/mol	0.0026	0.0000	1.0000	0.0453	0.0409	0.0000	1.0000					
ontaminants:												+	
2S	ppm v												
Эх	mg/Nm3												

Revision No.: FINAL

Date:

December 2016

Sheet: 32 of 112

3.7. Plant Performance Data

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant

The table below summarizes the energy performance and CO_2 emissions relevant to the Hydrogen Plant with CO_2 capture from Syngas using MDEA.

Plant Performance Data Case 1A		
INLET STREAMS		
Natural Gas (as Feedstock)	t/h	26.262
Natural Gas (as Fuel)	t/h	5.300
Natural Gas (Total Consumption)	t/h	31.562
Natural Gas LHV	MJ/kg	46.50
Total Energy Input	MW	407.68
OUTLET STREAMS		
Hydrogen Product to BL	t/h	8.994
	Nm³/h	100,000
Hydrogen LHV	MJ/kg	119.96
Total Energy in the Product	MW	299.70
POWER BALANCE		
Gross Power Output from the COGEN Plant	MWe	6.700
Hydrogen Plant Power Consumption	MWe	-1.257
COGEN Plant + Utilities + BoP Consumption	MWe	-0.377
CO2 Capture Plant	MWe	-0.569
CO2 Compression and Dehydration Unit	MWe	-3.005
Excess Power to the Grid	MWe	1.492
SPECIFIC CONSUMPTIONS		
Natural Gas (as Feedstock) GJ/100	00 Nm ³ H ₂	12.212
Natural Gas (as Fuel) GJ/100	0 Nm ³ H ₂	2.465
Feed + Fuel GJ/100	00 Nm ³ H ₂	14.676
SPECIFIC EMISSIONS		
Specific CO2 Emission t/100	0 Nm ³ H ₂	0.3704
	0 Nm ³ H ₂	0.4660
Overall CO2 Capture Rate (Case Specific)		55.71%
Overall CO2 Capture Rate (as Compared to Base Case)		54.22%

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 33 of 112

3.8. Preliminary Utilities Consumption

This section presents the different utilities consumption (usage) of the Hydrogen Plant, Power Island, CO_2 Capture Plant, CO_2 Compression and Dehydration, and others.

FOS	тев 🕅 🗤 нев	ELER						ESTIM	IATED	UTILIT	Y CON	NSUMF	TIONS	6			
CUSTOMER NAME: IE	AGHG						Case 1A: H2 Plant		REV.	REV. 0	REV. 1	REV. 2					SHEET
PROJECT NAME: T	ECHNO-ECONOMIC EVALUATION	OF H2 PRODU	CTION WIT	H CO2 CA	PTURE		with CO2 Capture		BY	GA							1
FWI CONTRACT: 1	BD0840 A						from Syne	gas using	CHKD	GC							OF
LOCATION: T	HE NETHERLAND						MD		DATE	April 2015							1
		ELECTRIC	POWER		STEAM t / h EFFLUE		EFFLUENT	LOSSES	DMW	RAW WATER		G WATER	SEA V	VATER	FUEL	INSTR. AIR	Nitrogen
		LOAD BHP	kW	LP	MP	HP	t/h	t/h	t/h	t/h	∆T (°C)	m³/hr	∆T (°C)	m³/hr	MMKcal/h	Nm ³ /h	Nm³/h
<u> </u>	DROGEN PLANT		1,257	0.60	0.00		-1.97	-43.7 (2)	110.7 (1)	0.00	11	28.0			58.9	100	(250)
						-65.0											
			569	64.40					0.79		11	841					
<u> </u>	CO2 CAPTURE								-64.4								
<u>CO</u> 2	2 COMPRESSION		3,005								11	38	7	857			
P	OWER ISLAND					65.0											
			-6,700	-65.0													
			377				-14.1			61.2	11	-907	7	1,427	0.5	100	(250)
<u> </u>	ITILITIES / BoP		511				14.1		-47.0	01.2			1	1,427	0.0	-200	(-500)
	TOTAL		-1,492	0	0	0	-16.1	-43.7	0	61.2	-	0	-	2,284	59.4	0	0
							(2) Losses	includes w	ater consun	s condensate ned in the re VWT) include	action and o	deaerator ve	ent	m blowdow	n in the hydro	ogen plant	

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 34 of 112

3.9. Preliminary Equipment List and Size of Main Components/Packages

This section presents the preliminary list of equipment and main components/packages relevant to the Case 1A.

		PREL	IMINARY EQ	UIPMENT LIS	БТ	REVISION	DATE	BY	CHKD	APP	SHEET
(FOS	STER WWHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	1
	STER W WHEELER	PROJECT NAME:	TECHNO-ECONOMI	C EVALUATION OF H	2 PRODUCTION						OF
		PROJECT NAME:						UF			
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								8
		CASE	USING MDEA	WITH CO2 CAPTUR	E FROM SYNGAS						
		UNIT HYDROGEN PLANT									
			S	IZE	DESIGN PRESSURE	DESIGN					
ITEM No.	DESCRIPTION	TYPE	ID	L/H		TEMPERATURE	MATERIAL	REN	IARKS		REV.
		mm mm MPa °C								<u> </u>	
DRUMS											
	FUEL GAS K.O. DRUM	VERTICAL									
						1					
											+
	STEAM DRUM	HORIZONTAL									
	PROCESS CONDENSATE SEPARATOR	VERTICAL									
	BLOWDOWN DRUM	VERTICAL									
	DEAERATOR	Stripping Section: Vertical									
		Storage Section: Horizontal									
											_
				ļ							1
											1
											1
											1
						1				1	1
FWI -110/45	l	l	l	BASE: EQLIST0_00.X	L LT	1		1	PRINTED ON:	1	24/06/201

		PRE		UIPMENT LI	ST	REVISION	DATE	BY	СНКД	APP	SHEET
FOS	TER WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	2
		PROJECT NAME:	TECHNO-ECONOMI	C EVALUATION OF H	2 PRODUCTION						OF
			WITH CO2 CAPTURI	E							
		FWI CONTRACT:	1BD0840A						-	-	_
		LOCATION	THE NETHERLAND								8
		CASE	CASE 1A: H2 PLANT USING MDEA	WITH CO2 CAPTURI	E FROM SYNGAS						0
		UNIT	HYDROGEN PLANT								
			si	ZE	DESIGN	DESIGN					
ITEM No.	DESCRIPTION	TYPE	ID	L/H	PRESSURE	TEMPERATURE	MATERIAL	REM	MARKS		REV.
			mm	mm	MPa	°C	1				
REACTORS											
	SULPHUR ABSORBERS	VERTICAL	2450	3650	4.075	400					
		VERTICI LE	2100	0000							
										-	
	PRE-REFORMER	VERTICAL	2100	3050	4.075	530					
											+
											-
	SHIFT CONVERTER	VERTICAL	3400	4400	3.080	430					
							1				1
							1				+
											-
							ļ				
							1				-
FWI -110/45	1			BASE: EQLIST0_00.XI	LT		I		PRINTED ON:		24/06/2015

		PREL	IMINARY EQ	JIPMENT LIS	ST	REVISION	DATE	BY	СНКД	APP	SHEET
FOS	TER 🕅 🗤 HEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	3
		PROJECT NAME:	TECHNO-ECONOMI	C EVALUATION OF H	1 2 PRODUCTION						OF
		FWI CONTRACT:	WITH CO2 CAPTURI 1BD0840A	E							-
		LOCATION	THE NETHERLAND								-
		CASE	CASE 1A: H2 PLANT	WITH CO2 CAPTUR	E FROM SYNGAS						8
			USING MDEA								4
		UNIT	HYDROGEN PLANT								
			DUTY	AREA	DESIGN PRESSURE	DESIGN TEMPERATURE					
ITEM No.	DESCRIPTION	TYPE	SS / TS	MATERIAL	REM	ARKS		REV.			
		MM kcal/h m ² MPa °C									
HEAT EXCHANGE	RS & COILS										
	FEED PRE-HEATER	SHELL & TUBE									
		SHELE & FODE									
	HTS WASTE HEAT BOILER	SHELL & TUBE									
	HTS WASTE HEAT BOILER	SHELL & TUBE									
											1
	BFW PRE-HEATER	SHELL & TUBE									
											1
	CONDENSATE HEATER	SHELL & TUBE									
											1
											1
	DEMIWATER PRE-HEATER	SHELL & TUBE									
										1	1
											1
	BLOWDOWN COOLER	SHELL & TUBE									
											1
	1				1						†
	HYDROGEN PRODUCT COOLER	SHELL & TUBE									
											+
											+
FWI -110/45	I	I	1	BASE: EQLIST0_00.X	LT	I	1	1	PRINTED ON:	1	24/06/2015

0		PRE		UIPMENT L	IST	REVISION	DATE	BY	CHKD	APP	SHEET
FOS	TER 🕅 🖤 HEELER)	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	4
I			TECHNO-ECONOM	IC EVALUATION OF	H 2 PRODUCTION						
I		PROJECT NAME:	WITH CO2 CAPTUR	RE							OF
I		FWI CONTRACT:	1BD0840A								
I		LOCATION	THE NETHERLAND								-
I		CASE	CASE 1A: H2 PLAN	T WITH CO2 CAPTUR	RE FROM SYNGAS						8
I			USING MDEA								_
. <u> </u>		UNIT	HYDROGEN PLANT	-							
				1	DESIGN	DESIGN				[—
ITEM No.	DESCRIPTION	TYPE	DUTY	AREA	PRESSURE	TEMPERATURE	MATERIAL	DEM	ARKS		REV.
TEMINO.	DESCRIPTION	TIFE			SS / TS	SS / TS	MATERIAL	KEW	ARRS		REV.
			MM kcal/h	m²	MPa	°C					
HEAT EXCHANGER	RS & COILS										_
	COMBUSTION AIR / FLUE GAS EXCHANGER										
ļ											
ļ	BFW PREHEATER COIL	COIL									
											+
											+
1	STEAM GENERATOR COIL	COIL									
ļ	STEAM SUPERHEATER COIL	COIL									
ļ	FEED PREHEATER COIL	COIL									
		0012									
											1
			1	1							1
	PRE-REFORMER FEED PREHEATER COIL	COIL									
											+
											
	REFORMER FEED PREHEATER COIL	COIL									
				1							
	REFORMER WASTE HEAT BOILER	SHELL & TUBE									
			<u> </u>								+
											+
•											

		TECHNO-ECONOMIC EVALUATION OF H 2 PRODUCTION PROJECT NAME: WITH CO2 CAPTURE			REVISION	DATE	BY	CHKD	APP	SHEET	
FOS	TER WHEELER					0	April 2015	GA	GC	GC	5
			TECHNO-ECONOMIC	C EVALUATION OF H	2 PRODUCTION						OF
		PROJECT NAME:	WITH CO2 CAPTURE	E							UF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								
		CASE	CASE 1A: H2 PLANT USING MDEA	WITH CO2 CAPTUR	E FROM SYNGAS						8
		UNIT	HYDROGEN PLANT								
		DUTY	SI	ZE	DESIGN	DESIGN	MATERIAL				
ITEM No.	DESCRIPTION		WIDTH	LENGTH	PRESSURE	TEMPERATURE		REM	ARKS		REV.
	ļ	MM Kcal/h	mm	mm	MPa	°C	HEADER/TUBES				'
AIR COOLERS											
	RAW HYDROGEN AIR COOLER										
											1
											+
FIRED EQUIPMENT											+
	<u>.</u> I										
											──
	STEAM REFORMER FURNACE	82.63 (**)						(**) Radiant Duty			
											\perp
FWI -110/45	1	1	1	BASE: EQLIST0_00.XI	LT	1	1	1	PRINTED ON:		24/06/2015

	চ	ELIMINARY EC	QUIPMENT LI	ST	REVISION	DATE	BY	СНКД	APP	SHEET	
FOS	STER WWHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	6
		PROJECT NAME:	TECHNO-ECONOMI	C EVALUATION OF H	2 PRODUCTION						OF
		TROSECT MAME.	WITH CO2 CAPTUR	E							
		FWI CONTRACT:	1BD0840A								_
		LOCATION	THE NETHERLAND								
		CASE	CASE 1A: H2 PLANT USING MDEA	WITH CO2 CAPTURE	E FROM SYNGAS						8
		UNIT	HYDROGEN PLANT								
ITEM No.	DESCRIPTION	ТҮРЕ	FLOW	HEAD	DESIGN PRESSURE	Brake Power	MATERIAL	PEM	ARKS		REV.
TEM NO.			m³/h	m	МРа	kW	CASING/IMPELLER				KEV.
PUMPS											
	BFW CIRCULATION PUMPS	Centrifugal									
	BFW FEED PUMPS	Centrifugal						Two pumps electrical m	otor driven		
											1
											_
											<u> </u>
/I -110/45				BASE: EQLIST0_00.XL							24/06/201

	_	PRE		QUIPMENT LI	ST	REVISION	DATE	BY	СНКД	APP	SHEET
FOS	TER 🕅 WHEELER	CLIENT: IEA GHG TECHNO-ECONOMIC EVALUATION OF H 2 PRODUCTION PROJECT NAME: WITH CO2 CAPTURE				0	April 2015	GA	GC	GC	8
	8		TECHNO-ECONOM	IC EVALUATION OF H	2 PRODUCTION						0.5
		PROJECT NAME:	WITH CO2 CAPTU	RE							OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND)							
		CASE	CASE 1A: H2 PLAN USING MDEA	IT WITH CO2 CAPTUR	E FROM SYNGAS						8
		UNIT	HYDROGEN PLAN	т							
			FLOW	PRESSURE	DESIGN PRESSURE	DESIGN TEMPERATURE					
ITEM No.	DESCRIPTION	TYPE		INLET/OUTLET			MATERIAL	RE	MARKS		REV.
			Nm³/h	MPa	MPa	°C					
MISCELLANEA	1										
	STEAM VENT SILENCER										
	REFORMER STEAM DESUPERHEATER										
	PREREFORMER STEAM DESUPERHEATER										
	PHOSPHATE PACKAGE										
	EXPORT STEAM DESUPERHEATER										
	OXYGEN SCAVENGER PACKAGE										
	PH CONTROL PACKAGE										
	PSA UNIT		124128	2.58/2.51 (H2 side)	2.8	80					
				-							
				+							
											_
ļ											
1											

		PRELIMINARY EQUIPMENT LIST-CO2 REMOVAL SYSTEM CLIENT: IEA GHG TECHNO-ECONOMIC EVALUATION OF H 2 PRODUCTION W PROJECT NAME:				REVISION	DATE	BY	CHKD	APP	SHEET
		CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	1
FOS	TER 🖉 WHEELER		TECHNO-ECONOMI	C EVALUATION OF H	² PRODUCTION WITH						
		PROJECT NAME:	CO2 CAPTURE								OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND		·						-
		CASE	CASE 1A: H2 PLANT	WITH CO2 CAPTURE	FROM SYNGAS USING						5
		0.102	MDEA								-
		UNIT	CO2 REMOVAL SYS	STEM							
			s	IZE	DESIGN	DESIGN					
ITEM No.	DESCRIPTION	TYPE	ID	L/H	PRESSURE	TEMPERATURE	MATERIAL	REM	ARKS		REV.
			mm	mm	MPa	°C					
TOWERS											
	ABSORBER	VERTICAL	3361	20000	28 & F.V	150					
		1	1								1
	STRIPPER	VERTICAL	4893	20000	3.5 & F.V	170				1	
		VERTICAL	4093	20000	5.5 & F.V	170					
RUMS											
	FLASH DRUM	HORIZONTAL									
										1	
											_
	AMINE SOLUTION TANK	HORIZONTAL									
			1							1	
			1								
			1							1	1
			+								
			+								
											_
										1	
			1								1
WI -110/45		L	1	BASE: EQLIST0_00.XL	Т				PRINTED ON:		24/06/2015

		PRELIMINAR	Y EQUIPMENT LI	ST-CO2 REMOV	AL SYSTEM	REVISION	DATE	BY	CHKD	APP	SHEET
FOS	TER 🕅 WHEELER	CLIENT: IEA GHG TECHNO-ECONOMIC EVA PROJECT NAME: WITH CO2 CAPTURE FWI CONTRACT: 1BD0840A LOCATION THE NETHERLAND				0	April 2015	GA	GC	GC	2
	_		TECHNO-ECONOMI	C EVALUATION OF H	2 PRODUCTION	1	June 2015	GA	GC	GC	OF
		PROJECT NAME:	WITH CO2 CAPTUR	E		1	June 2015	GA	GC	GC	UF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								
		CASE	CASE 1A: H2 PLANT USING MDEA	WITH CO2 CAPTUR	E FROM SYNGAS						5
		UNIT	CO2 REMOVAL SYS	TEM							
			DUTY	AREA	DESIGN PRESSURE	DESIGN TEMPERATURE					
ITEM No.	DESCRIPTION	TYPE			SS / TS	SS / TS	MATERIAL	REM	ARKS		REV.
			MM kcal/h	m²	MPa	°C					
HEAT EXCHANGER	<u></u>										
											1
	LEAN/RICH AMINE EXCHANGER	SHELL & TUBE									
											+
											_
	LEAN AMINE TRIM COOLER	SHELL & TUBE									
		CHEEC & TODE									
	STRIPPER CONDENSER										
		+									+
											+
	STRIPPER REBOILER	KETTLE									
	LEAN AMINE AIR COOLER										1
		+	+								+
		+									+
		<u> </u>									
		ļ									
	+	1									+
	<u> </u>	+	-								+
											
		<u> </u>	-		ļ						_
FWI -110/45				BASE: EQLIST0_00.XI	LT				PRINTED ON:		24/06/2015

		PRELIMINAR	Y EQUIPMENT LI	ST-CO2 REMOVA	AL SYSTEM	REVISION	DATE	BY	CHKD	APP	SHEET
FOS	TER 🕅 WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	3
		PROJECT NAME:	TECHNO-ECONOMI	C EVALUATION OF H	2 PRODUCTION					1	OF
		PROJECT NAME.	WITH CO2 CAPTUR	E							UP .
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								
		CASE	CASE 1A: H2 PLANT USING MDEA	WITH CO2 CAPTURE	E FROM SYNGAS						5
		UNIT	CO2 REMOVAL SYS	TEM							
		TYPE	DUTY	AREA	DESIGN PRESSURE	DESIGN TEMPERATURE	MATERIAL				DEV
ITEM No.	DESCRIPTION	TYPE			SS / TS	SS / TS	MATERIAL	KEW	IARKS		REV.
			MM kcal/h	m²	MPa	°C					
PUMPS											
	BOOSTER PUMPS	CENTRIFUGAL	Power: 464.74							1	1
	LEAN PUMP	CENTRIFUGAL									
										<u> </u>	
	AMINE SOLUTION PUMP					 					_
				-							
	CO2 PUMP (CO2 COMPRESSOR PACKAGE)	CENTRIFUGAL									
	<u> </u>										_
											
	<u>]</u>									_	
										1	+
FWI -110/45	<u>.</u>	1	1	BASE: EQLIST0_00.XL	T	1	1	1	PRINTED ON:	<u>.</u>	24/06/2015

		PRE	ELIMINARY E	QUIPMENT LIS	бТ	REVISION	DATE	BY	СНКД	APP	SHEET
FOS	TER 🕑 VV HEELER	CLIENT: IEA GHG PROJECT NAME: TECHNO-ECONOMIC EVALUATION OF H 2 PRODUCTION WITH CO2 CAPTURE FWI CONTRACT: 1BD0840A			0	April 2015	GA	GC	GC	4	
		PROJECT NAME:		C EVALUATION OF H 2	PRODUCTION WITH						OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								
		CASE	CASE 1A: H2 PLANT USING MDEA	WITH CO2 CAPTURE F	ROM SYNGAS						5
		UNIT	CO2 REMOVAL SYS	TEM							
				PRESSURE	DESIGN						
ITEM No.	DESCRIPTION	ТҮРЕ	FLOW	INLET/OUTLET	PRESSURE	Brake Power	MATERIAL	REM	IARKS		REV.
			Nm³/h	МРа	MPa	kW	CASING/IMPELLER				
COMPRESSORS 8	& BLOWERS										
	CO2 COMPRESSORS	CENTRIFUGAL	24745					seven Stages, Pin= 0. Tin =49°C, Tout=24° motor to b	ver: 2939 kW .29 MPa, Pout= 11 MPa, C, MW=42.9, Electical be included		
								- Compressor Package and seven	e includes 3 separators trim coolers		
											1
											1
											1
											1
											1
											1
								1			1
											1
FWI -110/45	1	1	1	BASE: EQLIST0_00.XLT		1	1	1	PRINTED ON:	L	24/06/2015

(I=======	E	PROJECT NAME: TECHNO-ECONOMIC EVALUATION OF H 2 PRODUCTION WITH CO2 CAPTURE		REVISION	DATE	BY	СНКД	APP	SHEET		
FOS	TER 🖉 VVHEELER)		IEA GHG			0	April 2015	GA	GC	GC	5
		PROJECT NAME:		C EVALUATION OF H 2	PRODUCTION WITH						OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								1
		CASE	CASE 1A: H2 PLANT USING MDEA	WITH CO2 CAPTURE F	FROM SYNGAS						5
		UNIT	CO2 REMOVAL SYS	TEM							
				PRESSURE	DESIGN						
ITEM No.	DESCRIPTION	TYPE	FLOW	INLET/OUTLET	PRESSURE	Brake Power	MATERIAL	REM	IARKS		REV.
			Nm³/h	МРа	MPa	kW	CASING/IMPELLER				
MISCELLANEA											
	DRYER UNIT PACKAGE	MOLSIV	26448					max H2O in outle	et stream= 50 ppm v		
											+
											-
											+
											<u> </u>
											+
											+
											1
											1
FWI -110/45	1	1	1	BASE: EQLIST0_00.XLT	•	1	1		PRINTED ON:	ı	24/06/2015

	PR	ELIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER	CLIENT:	IEA GHG	0	April 2015	NF	CG	CG	1
_	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE FOR INDUSTRY						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	CASE 1A: H2 PLANT WITH CO2 CAPTURE FROM SYNGAS USING MDEA						1
	UNIT	POWER ISLAND						

			0.75	PRESSURE	DESIGN	DESIGN			
ITEM No.	DESCRIPTION	ТҮРЕ	SIZE	INLET/OUTLET	PRESSURE	TEMPERATURE	MATERIAL	REMARKS	REV.
			-	MPa	MPa	°C			
POWER ISLAND									
	STEAM TURBINE AND GENERATOR PACKAGE								
	Including								
	STEAM TURBINE	Backpressure type	7 MWe	4.2 / 0.55				Including: lube oil system; Cooling system;	
								Hydraulic control system;	
								Seal system Drainage system Gland condenser	-
	STEAM TURBINE GENERATOR		9 MVA					Including relevant auxiliaries	
									1
	STEAM TURBINE BYPASS SYSTEM								1
									1
									1
									1
									-
									-
									+
									+
									+
		1							+
									+
									+
									+
									+
									+
WI -110/45				BASE: EQLIST0_00.XLT				PRINTED ON:	24/06/201

	PRE	LIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER WHEELER	CLIENT:	IEA GHG	0	April 2015	NF	CG	CG	1
<u> </u>	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE FOR INDUSTRY						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						1
	CASE	CASE 1A: H2 PLANT WITH CO2 CAPTURE FROM SYNGAS USING MDEA						3
	UNIT	UTILITIES AND BOP						

			SIZE	PRESSURE	DESIGN PRESSURE	DESIGN TEMPERATURE				
ITEM No.	DESCRIPTION	TYPE		INLET/OUTLET	PRESSURE		MATERIAL	REMARKS	RE	EV.
			-	MPa	MPa	°C				
OOLING WATER	SYSTEM									
	SEA WATER PUMPS	Centrifugal	2500 m3/h x 25 m 250 kWe					One operating one spare		
	SEA WATER / CLOSED COOLING WATER EXCHANGER		11.6 MWth							
	CLOSED COOLING WATER PUMPS		1000 m3/h x 25 m							
			110 kWe					One operating one spare		
	CLOSED COOLING WATER CIRCUIT EXPANSION DRUM									
	CORROSION INHIBITOR PACKAGE									
	LANT AIR SYSTEM									
INSTROMENT/P										
	AIR COMPRESSOR PACKAGE							including: - Air Compressor - Inter/after coolers		
								- Inter/after coolers - KO Drums (including final KO drum)		
	AIR DRYING PACKAGE	Adsorption bed	200 Nm3/h					including: - Adsorbent Bed (with automatic regeneration system)		
								automatic regenaration system) - Regeneration Electrical Heater - Pre Filters		
								- After Filters		
	IA RECEIVER DRUM	vertical								

(PR	ELIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER	CLIENT:	IEA GHG	0	April 2015	NF	CG	CG	2
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE FOR INDUSTRY						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	CASE 1A: H2 PLANT WITH CO2 CAPTURE FROM SYNGAS USING MDEA						3
	UNIT	UTILITIES AND BOP						

ITEM No.	DESCRIPTION	ТҮРЕ	SIZE	PRESSURE INLET/OUTLET	DESIGN PRESSURE	DESIGN TEMPERATURE	MATERIAL	REMARKS	REV
			-	MPa	MPa	°C			
RAW / DEMI WATE	RSYSTEM								
	RAW WATER TANK	Fixed roof						12 h storage	
	RAW WATER FILTRATION PACKAGE		65 m3/h						
	POTABLE WATER TANK	Fixed roof						12 h storage	
	POTABLE WATER PACKAGE								
	DEMI WATER PLANT FEED PUMP		65 m3/h x 25 m 7.5 kW						
	DEMI WATER PACKAGE UNIT		50 m3/h DW production					Including: - Multimedia filter	
								 Reverse Osmosis (RO) Cartidge filter Electro de-ionization system 	
	DEMIWATER PUMPS		50 m3/h x 50 m 15 kW						
	DEMIWATER TANK	Fixed roof						12 h storage	

	PRE	LIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER	CLIENT: IEA GHG		0	April 2015	NF	CG	CG	3
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE FOR INDUSTRY						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	CASE 1A: H2 PLANT WITH CO2 CAPTURE FROM SYNGAS USING MDEA						3
	UNIT	UTILITIES AND BOP						

			SIZE	PRESSURE	DESIGN	DESIGN			
ITEM No.	DESCRIPTION	TYPE		INLET/OUTLET	PRESSURE TEMPERATURE		MATERIAL	REMARKS	REV
			-	MPa	MPa	°C			
ITROGEN GENER	ATION PACKAGE								
	NITROGEN PRODUCTION PACKAGE		500 Nm3/h					Including: - Intake Air Filter	
								- Air Compressor - Air Receiver - Inter/after coolers	
								- KO Drums - Molecular Sieve Water Absorber (Air Dryer)	
								- Chiller Unit	
								- One Expansion Turbine - One Cryogenic Distillation Column - One Main Heat Exchanger	-
									-
	LIQUID NITROGEN STORAGE AND VAPORISATION PACKAGE		500 Nm3/h					Including: - Liquid Nitrogen Storage tank	
								- Nitrogen Vaporizer (Air Fin Type) - Nitrogen heater (electrical)	+
	GASEOUS NITROGEN BUFFER VESSEL								-
									+
LARE SYSTEM									
	FLARE KO DRUM	Horizontal							+
	FLARE PACKAGE		Max relief flowrate					Including riser; tip, seal drum	+
			102,000 kg/h; MW:12					including riser, up, sear drunn	
	FLARE KO DRUM PUMPS	Centrifugal						One operating one spare	-
BoP									
	INTERCONNECTING								
	BUILDING (CONTROL ROOM, ELECTRICAL SUBSTATION, LAB)								
	DRAIN SYSTEM								<u> </u>
	FIRE FIGHTING								
	ELECTRICAL SYSTEM							Up to generator terminals	

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 35 of 112

4. Case **1B**

4.1. Basis of Design

This section should be referred to the Annex I - Reference Document (Task 2) - for the general plant design criteria and assumptions used in the development of Case 1B (Hydrogen Plant with H₂-Rich Fuel Firing Burners and CO₂ Capture from Syngas using MDEA).

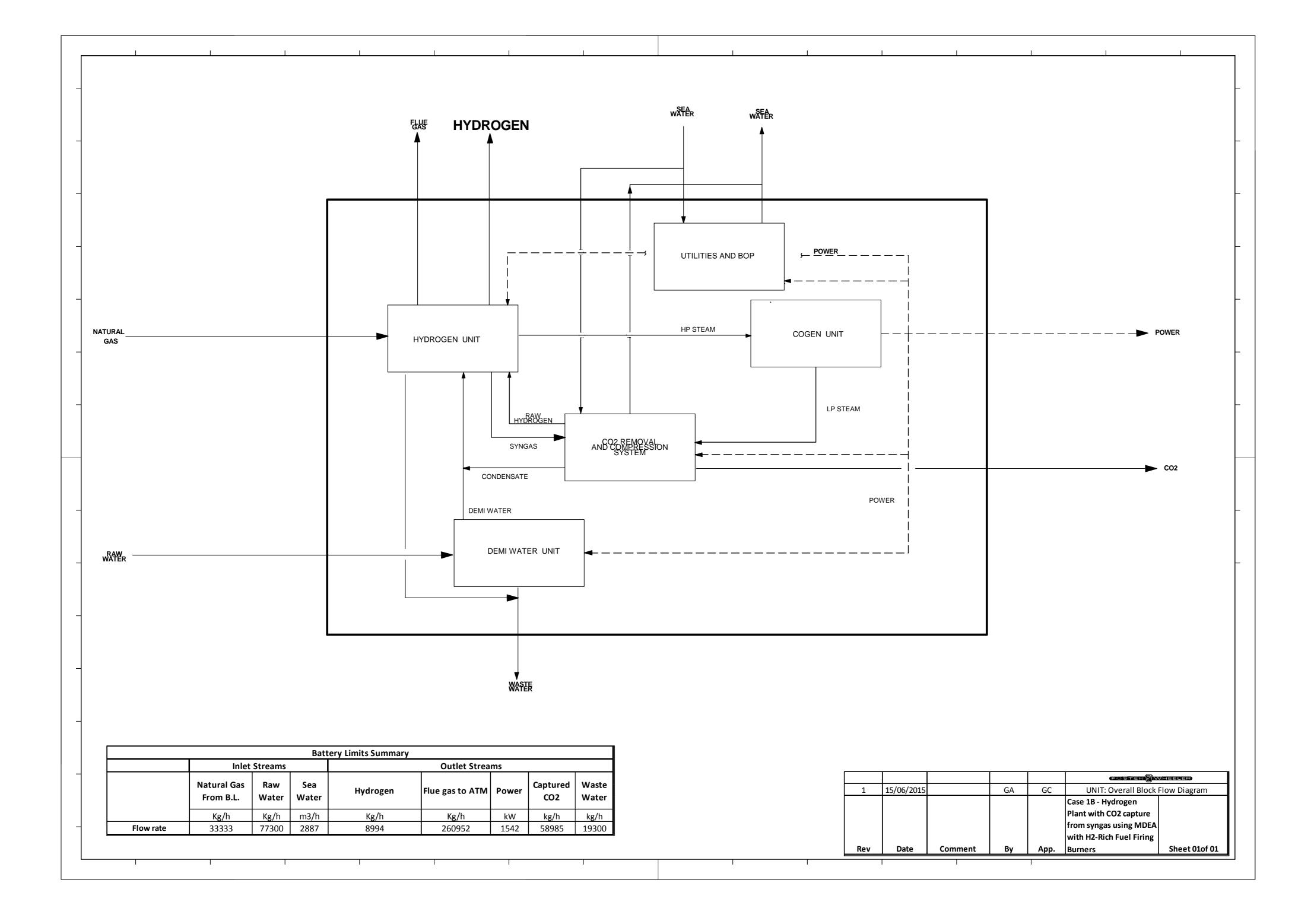
IEAGHG

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

December 2016 Sheet: 36 of 112

4.2. Units Arrangement


The units included in Case 1B (Hydrogen Plant with H_2 -Rich Fuel Firing Burners and CO_2 Capture from Syngas using MDEA) are as follows:

- Hydrogen Plant
- Cogen Plant (Power Island)
- CO₂ Capture System (Capture from Shifted Syngas using MDEA)
- CO₂ compression and dehydration
- Demi-Water Plant
- Utilities and Balance of Plant (BoP), consisting of:
 - Cooling Water System
 - Instrument/Plant Air System
 - Nitrogen Generation Package
 - Flare System
 - Interconnecting
 - Drain System
 - Buildings (Control Room, Laboratories, Electrical Sub-Station).

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 37 of 112

4.3. Overall Block Flow Diagram

The BFD presented in the next page shows the different unit processes and the relevant inlet/outlet streams included in the Hydrogen Plant for Case 1B (with H_2 Rich Fuel Firing Burners and CO₂ Capture from Syngas using MDEA).

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 38 of 112

4.4. Process Description

This section makes reference to the Process Flow Diagram of the SMR based hydrogen plant with CO₂ capture from shifted syngas presented in Section 4.5.

This section should be referred to Section 2.4.1 for the description of the Hydrogen Plant and associated steam production and BFW system; Section 3.4 for the description of the CO_2 Capture Plant, CO_2 Compression and Dehydration Unit, and Demi-Water and Seawater Cooling Systems.

4.4.1. Hydrogen Plant

The Hydrogen Plant assumed in Case 1B should have similar scheme to the Hydrogen Plant reported in Case 1A except that the syngas production capacity has been increased to produce more syngas – i.e. given the assumption that natural gas (as supplementary fuel) has been substituted with the sweet syngas from the CO_2 capture plant. This therefore correspond to higher natural gas consumption (as feedstock) as compared to the Base Case.

In this regard, the SMR is fired with the PSA tail gas as primary fuel and with the sweet syngas from the CO_2 capture plant as supplementary fuel. The firing system of the SMR plant is based on burning of H_2 rich fuel where the technical considerations relevant to NOx emission are described in the next section.

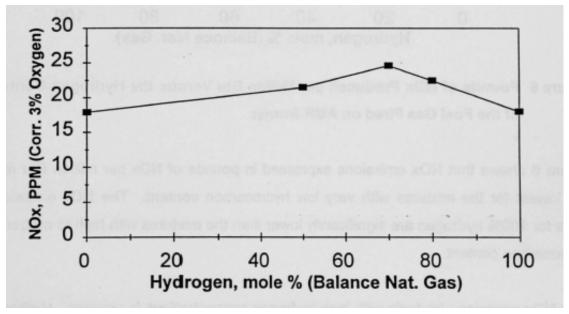
The capacity and size of the PSA unit used in Case 1B should have the same size and capacity of the PSA unit deployed in Case 1A (given that the H_2 production capacity is kept constant).

The steam generation capacity (i.e. reformer waste heat boiler, shift converter waste heat boiler, steam generating coil and steam superheater coil) and all other heat exchange equipment (Feed-Pre-heater Coil, Pre-Reformer Feed Pre-heater Coil, Reformer Feed Pre-Heater Coil, et. al.) are sized accordingly to accommodate the larger volume of syngas produced (as compared to Case 1A).

4.4.2. <u>Considerations on Hydrogen-Rich Fuel Burners</u>

The source of information presented in this section are obtained from John Zinc / Hamworthy Combustion.

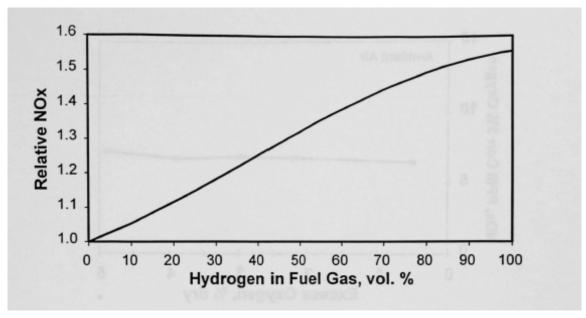
The fuel gas composition has a significant impact to the burner's NOx emission performance because it directly affects the temperature profile in the flame zone.


When firing natural gas, the NO_x emissions are generally produced from the combination of thermal and prompt NO_x mechanisms.

Revision No.:	FINAL
Date:	December 2016
	Sheet: 39 of 112

The thermal NO_x is primarily generated by the reaction between N_2 and O_2 contained in the combustion air. The thermal NOx production increases exponentially with peak flame temperatures. It should be noted that H_2 has a higher adiabatic flame temperature than natural gas therefore it has a higher potential to promote thermal NO_x production.

On the other hand, Prompt NO_x is formed via several mechanisms, but mainly with the reaction between N_2 and hydrocarbon radicals (i.e. C and CH). In other words, the prompt NOx mechanism requires the presence of carbon-containing radicals which are not present when burning H₂.


If H_2 is mixed with natural gas, the NO_x emission tends to increase and reaches its peak when the fuel gas containing around 70% H_2 (with NG as the balance) is burned. After which, the NOx emission tends to decrease as the proportion of the natural gas decreases (as shown in figure below).

The increase in the NOx emission could be attributed to the increase in thermal NOx emission (due to higher H_2 content); whilst the reduction of the NOx emissions as H_2 content reaches 100% could be attributed to the reduction in the prompt NOx mechanism.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 40 of 112

For conventional burners, it could be noted that the peak NO_x emissions could occur when firing 100% hydrogen (see figure below).

If thermal NO_x emissions are controlled to a relatively low levels (e.g. with the use of low/ultralow NO_x burners), it should be expected that NOx emission could also be reduced once the fuel gas contain less hydrocarbon (i.e. for the case when firing H₂).

As far as burners cost is concern, it is considered in this study that there is no difference between low NO_x burners using natural gas vs. burners firing hydrogen-rich fuel.

4.4.3. <u>CO2 Capture Plant (MDEA based Chemical Absorption Technology)</u>

The CO_2 capture plant for Case 1B is also based on chemical absorption technology using MDEA as solvent and has similar scheme to the CO_2 capture plant as described in Case 1A except that it would need to handle larger volume of shifted syngas.

As such, the description for the CO₂ Capture Plant should be referred to Section 3.4.2.

4.4.4. <u>CO₂ Compression and Dehydration</u>

The CO_2 compression and dehydration unit for Case 1B has similar scheme to the CO_2 compression and dehydration unit as described in Case 1A except that it would need to handle larger volume of captured CO_2 .

As such, the description for the CO₂ Capture Plant should be referred to Section 3.4.3.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 41 of 112

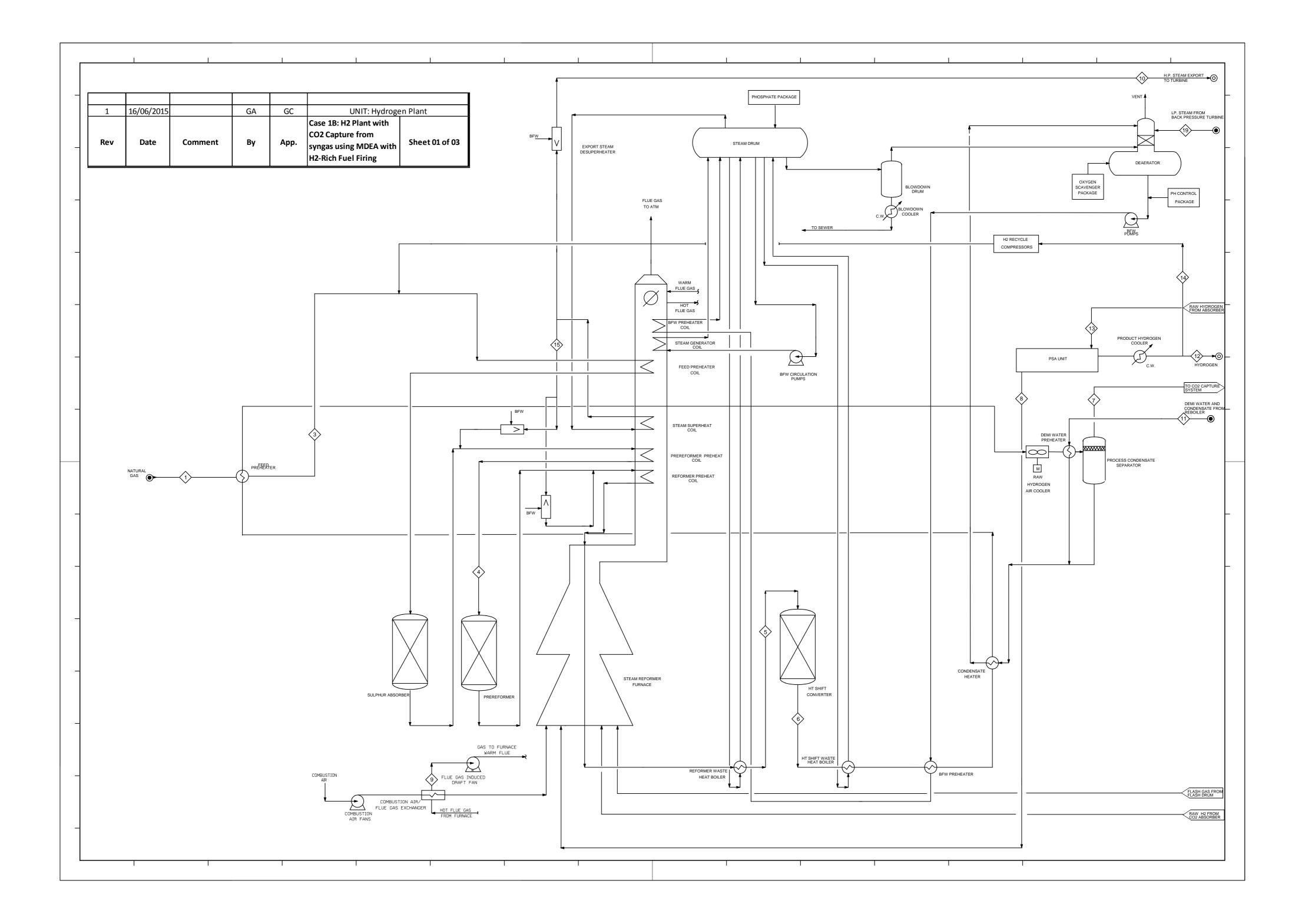
4.4.5. Cogen Plant (Power Island)

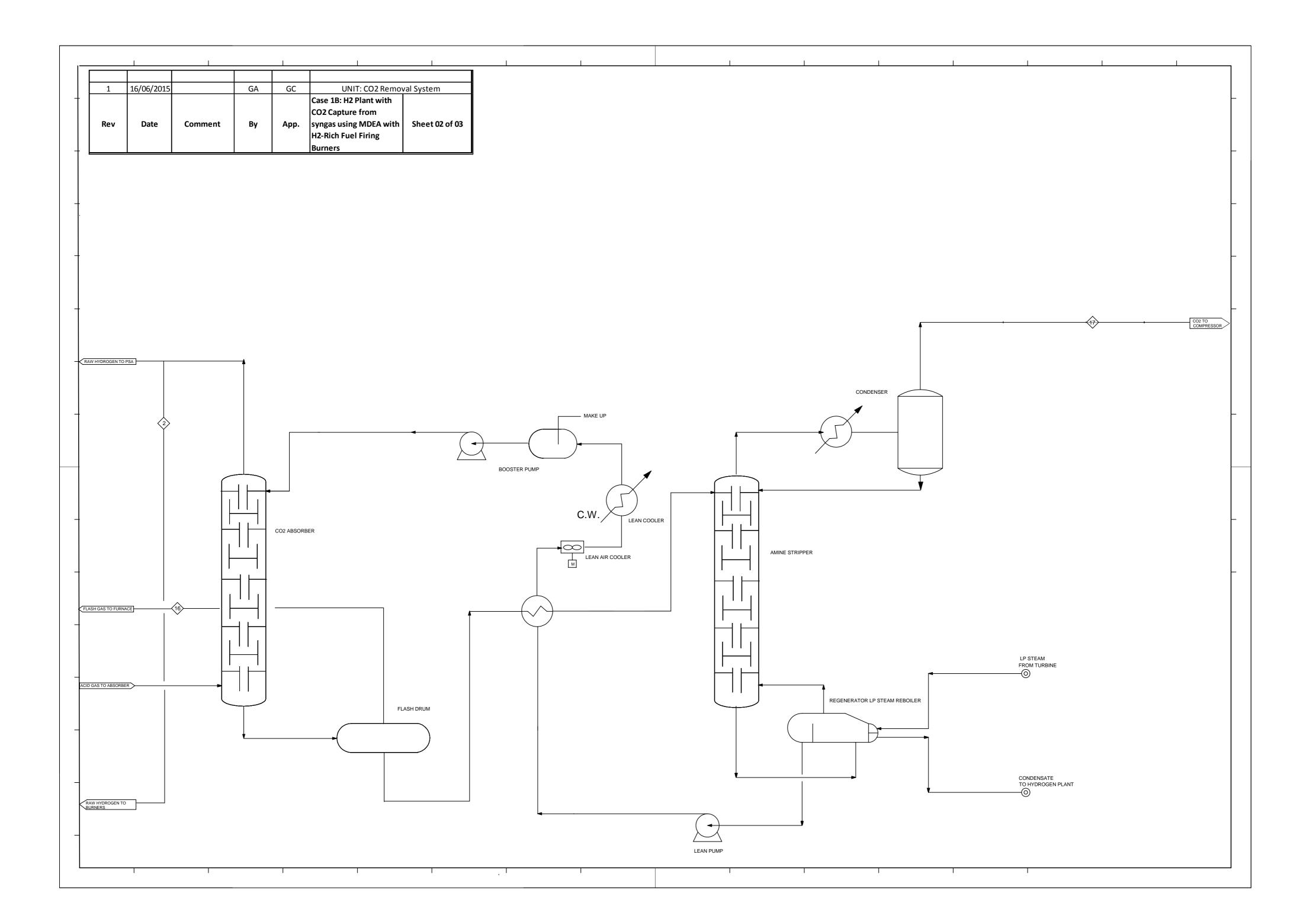
The Cogen Plant for Case 1B is also based a back pressure type steam turbine as described in Section 3.4.4.

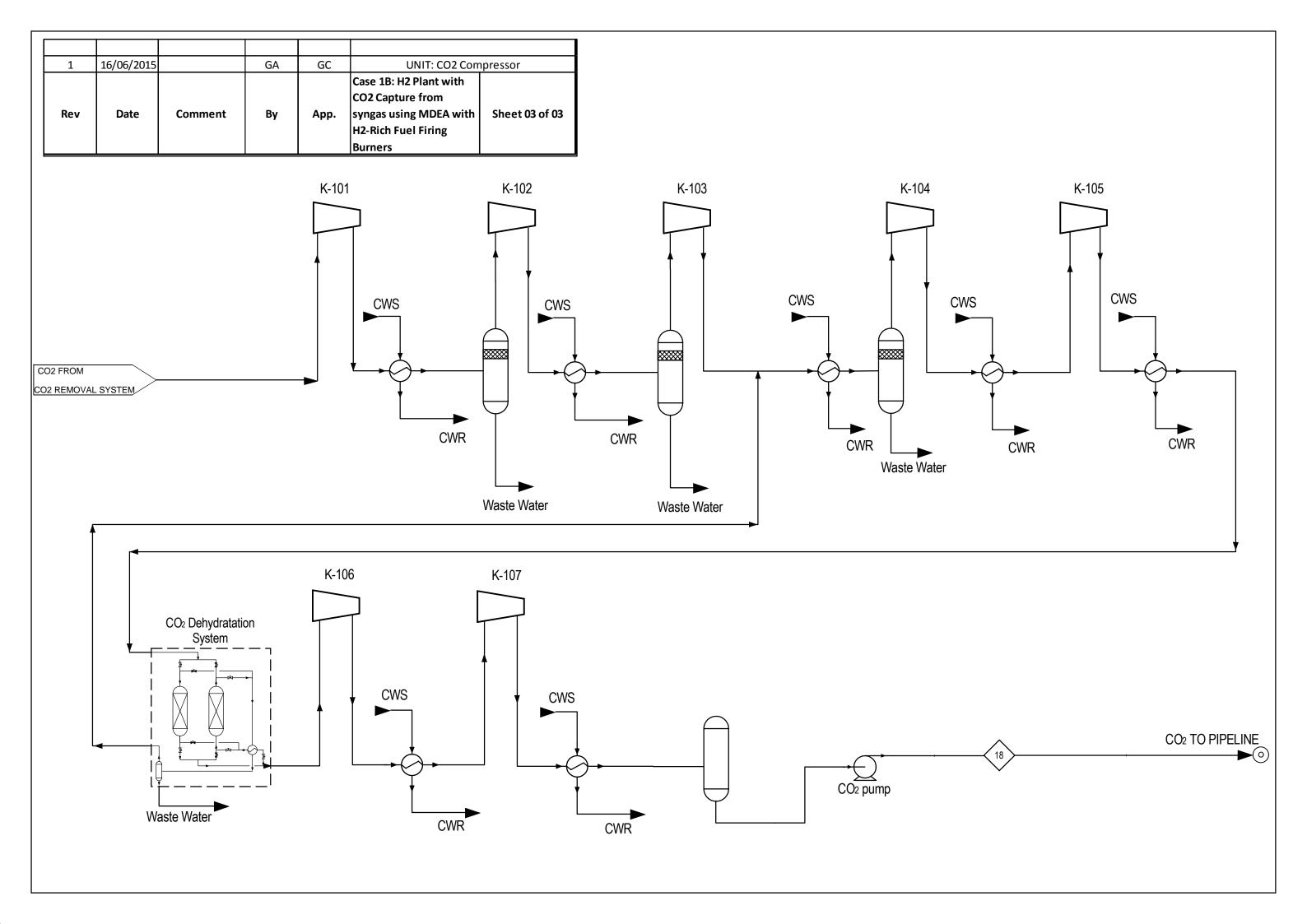
4.4.6. <u>Demi-Water and Cooling Water System</u>

The Demi-Water Plant and Cooling Water System for Case 1B has similar scheme used in Case 1A as described in Section 3.4.5.

4.4.7. Balance of Plant (BoP)


The operation of the whole plant is supported by additional utilities and facilities. These are presented in Section 2.4.4.


Revision No.:	FINAL
Date:	December 2016
	Sheet: 42 of 112


4.5. Process Flow Diagram (Hydrogen Plant and CO₂ Capture System)

The PFDs enclosed shows the different processes included in the Hydrogen Plant, the CO₂ Capture Plant and the CO₂ Compression and Dehydration Unit.

The processes involving the Hydrogen Plant are described in Section 2.4. The processes involving the CO_2 capture plant and the CO_2 Compression and Dehydration Unit are described in Section 3.4.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 43 of 112

4.6. Heat and Mass Balance

The heat and mass balances reported in this section makes reference to the Process Flow Diagram presented in Section 4.5.

FOSTER	LER

FOST	FOSTER WHEELER										HEAT AND MATERIAL BALANCE ase 1B - Hydrogen Plant with CO2 capture from syngas using MDEA with H2-Rich Fuel Firing Burners				
CLIENT:		IEA GHG							REV	DATE	BY	СНКД	APP		
PROJECT NAME:		TECHNO-ECONO	MIC EVALUATION	OF H2 PRODUCTIC	N WITH CO2 CA	PTURE			0	April 2015	GA	CG	CG		
FWI CONTRACT:		1BD0840A							1	June 2015	GA	CG	CG		
LOCATION:		THE NETHERLAN	D												
		1				,				1					
Stream		1	2	3	4	5	6	7	8	9	10	11	12		
Description		Natural Gas From B.L.	Raw Hydrogen To Burners	Natural Gas feedstock to Hydrogen Plant	Purified Feedstock to Pre-reformer	HTS Reactor Inlet	HTS Reactor Outlet	Raw Syngas to CO2 capture system	PSA Tail gas	Flue gas to ATM	HP Steam export	Demi Water (make up) and condensate from Stripper reboiler	Hydrogen to B.L		
Temperature	°C	9	41	127	500	320	412	35	28	135	397	15	40		
Pressure	MPa	7.00	2.58	3.73	3.41	2.82	2.79	2.60	0.13	0.02	4.23	0.60	2.50		
Molar Flow	kmol/h	1849.9	1481.5	1849.9	7006.9	10632.1	10632.1	8375.5	1049.4	9793.5	4359.5	7560.3	4461.5		
Mass Flow	kg/h	33333	6181	33333	125645	129194	129194	88529	14080	260952	78537	136200	8994		
Composition															
CO2	mol/mol	0.0200	0.0026	0.0200	0.0053	0.0493	0.1282	0.1627	0.0139	0.0677	0.0000	0.0000	0.0000		
СО	mol/mol	0.0000	0.0551	0.0000	0.0000	0.1154	0.0365	0.0463	0.2915	(2)	0.0000	0.0000	0.0000		
Hydrogen	mol/mol	0.0000	0.9009	0.0000	0.0053	0.5167	0.5957	0.7561	0.4763	0.0000	0.0000	0.0000	0.9999+		
Nitrogen	mol/mol	0.0089	0.0023	0.0089	0.0023	0.00155	0.0015	0.0020	0.0124	0.6712	0.0000	0.0000	0.0000		
Oxygen	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0113	0.0000	0.0000	0.0000		
Methane	mol/mol	0.8900	0.0363	0.8900	0.2350	0.02399	0.0240	0.0305	0.1918	0.0000	0.0000	0.0000	0.0000		
Ethane	mol/mol	0.0700	0.0000	0.0700	0.0185	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Propane	mol/mol	0.0100	0.0000	0.0100	0.0026	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
n-Butane	mol/mol	0.0010	0.0000	0.0010	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
n-Pentane	mol/mol	0.0001	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
H2O	mol/mol	0.0000	0.0026	0.0000	0.7307	0.29307	0.2141	0.0024	0.0140	0.2497	1.0000	1.0000	0.0000		
Contaminants:															
H2S	ppm v	(1)													
NOx	mg/Nm3									120 max					
Notes:		(1) For feedstock pu (2) 30 mg/Nm3 max		gn purposes 5 ppmv	of H2S have been a	assumed in NG to Hyd	rogen Plant								

HEAT AND MATERIAL BALANCE Case 1B - Hydrogen Plant with CO2 capture from syngas using MDEA wi H2-Rich Fuel Firing Burners						
ВҮ	DATE	СНКД	APP			
L5 GA	April 2015	CG	CG			
	June 2015	CG	CG			
I						
	-					
<u> </u>	+					
	+					

Revision No.: FINAL

Date:

December 2016

Sheet: 44 of 112

4.7. Plant Performance Data

Techno-Economic Evaluation of Standalone (Merchant) H2 Plant

The table below summarizes the energy performance and CO_2 emissions relevant to the Hydrogen Plant with H₂ Rich Fuel Firing System and CO₂ capture from Syngas using MDEA.

Plant Performance Data Case 1B									
INLET STREAMS									
Natural Gas (as Feedstock)	t/h	33.333							
Natural Gas (as Fuel)	t/h	-							
Natural Gas (Total Consumption)	t/h	33.333							
Natural Gas LHV	MJ/kg	46.50							
Total Energy Input	MW	430.55							
OUTLET STREAMS									
Hydrogen Product to BL	t/h	8.994							
	Nm³/h	100,000							
Hydrogen LHV	MJ/kg	119.96							
Total Energy in the Product	MW	299.70							
POWER BALANCE									
Gross Power Output from the COGEN Plant	MWe	8.000							
Hydrogen Plant Power Consumption	MWe	-1.582							
COGEN Plant + Utilities + BoP Consumption	MWe	-0.440							
CO2 Capture Plant	MWe	-0.717							
CO2 Compression and Dehydration Unit	MWe	-3.719							
Excess Power to the Grid	MWe	1.542							
SPECIFIC CONSUMPTIONS									
Natural Gas (as Feedstock) GJ/10	00 Nm ³ H ₂	15.500							
Natural Gas (as Fuel) GJ/10	00 Nm ³ H ₂	-							
Feed + Fuel GJ/10	00 Nm ³ H ₂	15.500							
SPECIFIC EMISSIONS		•							
Specific CO2 Emission t/10	00 Nm ³ H ₂	0.2918							
	00 Nm ³ H ₂	0.5899							
Overall CO2 Capture Rate (Case Specific)		66.90%							
Overall CO2 Capture Rate (as Compared to Base Case)		63.93%							

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 45 of 112

4.8. Preliminary Utilities Consumption

This section presents the different utilities consumption (usage) of the Hydrogen Plant, Power Island, CO₂ Capture Plant, CO₂ Compression and Dehydration, and others.

FOSTE	R 🕅	wн	EE	LER

ESTIMATED UTILITY CONSUMPTIONS

													<u> </u>				
CUSTOMER NAME									REV.	REV. 0	REV. 1	REV. 2			′		SHEET
PROJECT NAME:	TECHNO-ECONOMIC EVALUAT	ION OF H2 PRODU	JCTION WIT	FH CO2 CA	PTURE				BY	GA					Γ		1
FWI CONTRACT:	1BD0840 A						from sy	yngas using	CHKD	CG							OF
LOCATION:	THE NETHERLAND							th H2-Rich Fuel Ig Burners	DATE	April 2015		1					1
		ELECTRIC	C POWER		STEAM t / h		EFFLUENT		DMW	RAW WATER	COOLIN	G WATER	SEA V	WATER	FUEL	INSTR. AIR	Nitrogen
		LOAD BHP	kW	LP	MP	HP	t/h	t/h	t/h	t/h	ΔT (°C)	m³/hr	ΔT (°C)	m³/hr	MMKcal/h		Nm ³ /h
	L HYDROGEN PLANT		1582	0.78	0.00		-1.48	-56.2 (2)	136.2 (1)	0.00	11	30.7				100	(250)
			L'			-78.5									,		!
			L′	<u> </u>										<u> </u>	'	<u> </u>	
			i – – – – – – – – – – – – – – – – – – –			Γ											
		717	77.8					1.03		11	1068			'			
	CO2 CAPTURE		<u> </u>						-77.8						'		
			<u> </u>												,		'
			<u> </u>												'		
CO2 COMPRESSION			3719								11	47	7	1085	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
		<u> </u>															
			<u> </u>														
	POWER ISLAND		<u>ا </u>			78.5	T								T '		
	POWER ISLAND		-8,000	-78.5		1					1	1			,		
	Τ		1												1		
			í			1	1										1
			440			1	-17.8			77.3	11	-1146	7	1802	0.5	100	(250)
	UTILITIES / BoP		í ′						-59.5						,	-200	(-500)
			[]			1	1								+		
	1		í'			†	1					1			1		
	TOTAL		-1,542	0	0	0	-19.3	-56.2	0	77.3	-	0	-	2,887	0.5	0	0
							NOTES:										
							(1) DMW i	is the sum of DM	/W plus cor	ndensate fror	m CO2 capt	ure unit reba	oiler				
							(2) Losses	s includes water	consumed [:]	in the reactiv	on and deae	erator vent					
							· /	effluent (to be se					∍am drum bl	owdown in [.]	the hydroger	ו plant	

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 46 of 112

4.9. Preliminary Equipment List and Size of Main Components/Packages

This section presents the preliminary list of equipment and main components/packages relevant to the Case 1B.

с		PREL	IMINARY EQ	UIPMENT LIS	бТ	REVISION	DATE	BY	СНКД	APP	SHEET
	STER WWHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	1
	STER W WHEELER	PROJECT NAME:	TECHNO-ECONOMI	IC EVALUATION OF H	2 PRODUCTION						OF
			WITH CO2 CAPTUR	E							UF
		FWI CONTRACT:									
		LOCATION	LOCATION THE NETHERLAND								7
		CASE		WITH CO2 CAPTUR							
		UNIT	USING MDEA WITH H2 RICH FUEL FIRING BURNERS HYDROGEN PLANT								_
		UNIT									
			s	IZE	DESIGN	DESIGN					
ITEM No.	DESCRIPTION	TYPE	ID	L/H	PRESSURE	TEMPERATURE	MATERIAL	REN	IARKS		REV.
			mm	mm	MPa	°C					
DRUMS											
	FUEL GAS K.O. DRUM	VERTICAL									
											+
	STEAM DRUM	HORIZONTAL									
											_
	PROCESS CONDENSATE SEPARATOR	VERTICAL									
	BLOWDOWN DRUM	VERTICAL									
		Stripping Section: Vertical									
	DEAERATOR	Storage Section: Horizontal									
		-									
		1		1	1			1		1	
											-
										1	
		1		1	1	1		1		1	1

		PRE		UIPMENT LI	ST	REVISION	DATE	BY	CHKD	APP	SHEET	
FOS	TER WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	2	
		C EVALUATION OF H	2 PRODUCTION						OF			
		PROJECT NAME:	WITH CO2 CAPTUR	E								
		FWI CONTRACT:	1BD0840A									
		LOCATION	THE NETHERLAND								_	
		CASE	HYDROGEN PLANT								7	
		UNIT	SYNGAS WITH H2 R HYDROGEN PLANT		NERS						-	
		ONT	INDIGGENT LANT									
			s	ZE	DESIGN	DESIGN						
ITEM No.	DESCRIPTION	TYPE	ID	L/H	PRESSURE	TEMPERATURE	TEMPERATURE	MATERIAL	REM	IARKS		REV.
			mm	mm	MPa	°C	-					
REACTORS	•											
			1								+	
		VERTICAL	2700	3880	4.075	400						
	SULPHUR ABSORBERS	VERTICAL	2700	3880	4.075	400						
	PRE-REFORMER	VERTICAL	2150	3190	4.075	530						
										1	<u> </u>	
			1									
	SHIFT CONVERTER	VERTICAL	3700	4740	3.080	430						
											+	
L			+									
	1										+	
L												
			Ì									
			1								-	
			<u> </u>									
				ļ								
FWI -110/45	1			BASE: EQLIST0_00.XI	T	•			PRINTED ON:	1	24/06/2015	

		PREL	IMINARY EQ	UIPMENT LIS	ST	REVISION	DATE	BY	CHKD	APP	SHEET
FOS	TER 🕅 WHEELER	CLIENT:	IEA GHG		-	0	April 2015	GA	GC	GC	3
	_	PROJECT NAME: TECHNO-ECONOMIC EVALUATION OF H 2 PRODUCTION WITH CO2 CAPTURE WITH CO2 CAPTURE FWI CONTRACT: 1BD0840A									OF
				E							
											4
		LOCATION	THE NETHERLAND							ļ	7
		CASE	HYDROGEN PLANT SYNGAS WITH H2 R								'
		UNIT	HYDROGEN PLANT		INERS						-
		-								1	1
			DUTY	AREA	DESIGN PRESSURE	DESIGN TEMPERATURE					
ITEM No.	DESCRIPTION	TYPE	Dorr		SS / TS	SS / TS	MATERIAL	REM	ARKS		REV.
			MM kcal/h	m ²	MPa	°C					
HEAT EXCHANGERS	S 2 COIL S										
HEAT EAGHANGER											
	FEED PRE-HEATER	SHELL & TUBE									
	HTS WASTE HEAT BOILER	SHELL & TUBE									
	BFW PRE-HEATER	SHELL & TUBE									
	CONDENSATE HEATER	SHELL & TUBE									
	CONDENSATE HEATER	SHELL & TUBE									
			1								
			1							1	
	DEMIWATER PRE-HEATER	SHELL & TUBE									
					+						
	BLOWDOWN COOLER	SHELL & TUBE									
	HYDROGEN PRODUCT COOLER	SHELL & TUBE									
			1								
			1								
		1	1	1	1	1	1	1		1	1

Statistic Action of		PRE		UIPMENT L	IST	REVISION	DATE	BY	CHKD	APP	SHEET
FOS	TER 🕅 WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	4
		PROJECT NAME:	TECHNO-ECONOM	IC EVALUATION OF I	H 2 PRODUCTION						
		PROJECT NAME:	WITH CO2 CAPTUR	E							OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								
		CASE	HYDROGEN PLANT								7
		UNIT	SYNGAS WITH H2 F		INERS						-
		UNIT	HTDROGEN FLANT								
					DESIGN	DESIGN				1	T
ITEM No.	DESCRIPTION	TYPE	DUTY	AREA	PRESSURE	TEMPERATURE	MATERIAL	REM	ARKS		REV.
		=		2	SS / TS	SS/TS					
			MM kcal/h	m²	MPa	°C					
HEAT EXCHANGE											
	COMBUSTION AIR / FLUE GAS EXCHANGER										
											1
	BFW PREHEATER COIL	COIL									
											+
	STEAM GENERATOR COIL	COIL									
	STEAM SUPERHEATER COIL	COIL									
											-
											_
	FEED PREHEATER COIL	COIL									
	PRE-REFORMER FEED PREHEATER COIL	COIL									
											-
											-
	REFORMER FEED PREHEATER COIL	COIL									
											1
	REFORMER WASTE HEAT BOILER	SHELL & TUBE									
											+
EN1 110/JE					-						0.4/02/22
FWI -110/45				BASE: EQLIST0_00.X	LI				PRINTED ON:		24/06/2015

		PREL	IMINARY EQ	UIPMENT LIS	т	REVISION	DATE	BY	СНКД	APP	SHEET
FOS	TER WWHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	5
			TECHNO-ECONOMI	C EVALUATION OF H	2 PRODUCTION						
		PROJECT NAME:	WITH CO2 CAPTUR	E							OF
1		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								1
1		CASE	HYDROGEN PLANT	WITH CO2 CAPTURE	-CAPTURE FROM						7
1		CASE	SYNGAS WITH H2 F	ICH SMR FUEL BURN	IERS						
		UNIT	HYDROGEN PLANT								
		-									
		DUTY	s	IZE	DESIGN	DESIGN	MATERIAL				
ITEM No.	DESCRIPTION	bon	WIDTH	LENGTH	PRESSURE	TEMPERATURE		REM	IARKS		REV.
		MM Kcal/h	mm	mm	MPa	°C	HEADER/TUBES				
AIR COOLERS											
	RAW HYDROGEN AIR COOLER										
	·										-
FIRED EQUIPMENT	T										
	STEAM REFORMER FURNACE	104.88 (**)						(**) Radiant Duty			
FWI -110/45		•	•	BASE: EQLISTO_00.XL	T	•			PRINTED ON:	•	24/06/2015

	I		ELIMINARY EC	QUIPMENT LI	ST	REVISION	DATE	BY	CHKD	APP	SHEET
TOS	STER WWHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	6
		PROJECT NAME:	TECHNO-ECONOMI	C EVALUATION OF H	2 PRODUCTION						OF
		PROJECT NAME:	WITH CO2 CAPTUR	E							OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								
		CASE		WITH CO2 CAPTURE							7
			SYNGAS WITH H2 R HYDROGEN PLANT	NCH SMR FUEL BURN	IERS						_
		UNIT	HIDROGEN PLANT								
ITEM No.	DESCRIPTION	ТҮРЕ	FLOW	HEAD	DESIGN PRESSURE	Brake Power	MATERIAL	REM	ARKS		REV.
			m³/h	m	MPa	kW	CASING/IMPELLER				
PUMPS											
	BFW CIRCULATION PUMPS	Centrifugal									
	BFW FEED PUMPS	Centrifugal						Two pumps electrical m	otor driven		
											_
											_
											_
											-
											-
											_
											_
											_
											_
											+
/I -110/45				BASE: EQLIST0_00.XL	Ļ			<u> </u>	PRINTED ON:		24/06/201

	_	PRE			ST	REVISION	DATE	BY	СНКД	APP	SHEET
FOS	TER 🕅 WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	7
	2		TECHNO-ECONOM	IIC EVALUATION OF H	2 PRODUCTION						
		PROJECT NAME:	WITH CO2 CAPTUR	RE							OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND	1							
		CASE	HYDROGEN PLANT	T WITH CO2 CAPTURE	E-CAPTURE FROM						7
				RICH SMR FUEL BUR	NERS						_
		UNIT	HYDROGEN PLAN	Т							
			FLOW	PRESSURE	DESIGN	DESIGN					
ITEM No.	DESCRIPTION	TYPE	FLOW	INLET/OUTLET	PRESSURE	TEMPERATURE	MATERIAL	RE	MARKS		REV.
			Nm ³ /h	MPa	MPa	°C					
MISCELLANEA	•										
	STEAM VENT SILENCER										
	REFORMER STEAM DESUPERHEATER										
	PREREFORMER STEAM DESUPERHEATER										
	PHOSPHATE PACKAGE										
	EXPORT STEAM DESUPERHEATER										
	OXYGEN SCAVENGER PACKAGE										
	pH CONTROL PACKAGE										
	PSA UNIT		124352	2.58/2.51 (H2 side)	2.8	80					
FWI -110/45	1			BASE: EQLIST0_00.XI	Г				PRINTED ON:	1	24/06/2015

		PRELIMINA	ARY EQUIPMENT	LIST-CO2 REMO	VAL SYSTEM	REVISION	DATE	BY	CHKD	APP	SHEET
		CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	1
FOS	TER 🖉 WHEELER		TECHNO-ECONOMI	C EVALUATION OF H	2 PRODUCTION WITH						
		PROJECT NAME:	CO2 CAPTURE								OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								
		CASE			FROM SYNGAS USING						5
		CAGE	MDEA WITH H2 RIC	H FUEL FIRING BURN	IERS						
		UNIT	CO2 REMOVAL SYS	STEM							
			S	IZE	DESIGN	DESIGN					
ITEM No.	DESCRIPTION	TYPE	ID	L/H	PRESSURE	TEMPERATURE	MATERIAL	REM	ARKS		REV.
			mm	mm	MPa	°C					
TOWERS											
	ABSORBER	VERTICAL	3865	20000	28 & F.V	150					
										1	
	STRIPPER	VERTICAL	5627	20000	3.5 & F.V	170					-
		VERTICAL	5027	20000	3.3 & F.V	170					
RUMS											
	FLASH DRUM	HORIZONTAL									
	AMINE SOLUTION TANK	HORIZONTAL									
		HORIZONTAL									
		1	1	1		<u> </u>					
										1	
				ļ						ļ	_
										1	
WI -110/45				BASE: EQLIST0_00.XL	T				PRINTED ON:		24/06/2015

	Ē	PRELIMINAR	Y EQUIPMENT LI	ST-CO2 REMOV	AL SYSTEM	REVISION	DATE	BY	СНКД	APP	SHEET
FOS	TER 🕅 WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	2
		PROJECT NAME:	TECHNO-ECONOMI	C EVALUATION OF H	2 PRODUCTION	1	June 2015	GA	GC	GC	OF
			WITH CO2 CAPTUR	E							
		FWI CONTRACT:	1BD0840A THE NETHERLAND								-
		CASE		WITH CO2 CAPTURE	E-CAPTURE FROM SY	1				+	5
		UNIT	CO2 REMOVAL SYS								-
			DUTY	AREA	DESIGN PRESSURE	DESIGN TEMPERATURE					
ITEM No.	DESCRIPTION	TYPE			SS/TS	SS / TS	MATERIAL	REM	IARKS		REV.
	<u> </u>		MM kcal/h	m²	MPa	°C				<u> </u>	
HEAT EXCHANGER	<u>15</u>									<u> </u>	<u> </u>
	LEAN/RICH AMINE EXCHANGER	SHELL & TUBE									
	LEAN AMINE TRIM COOLER	SHELL & TUBE									
	STRIPPER CONDENSER										
	STRIFFER CONDENSER										
	STRIPPER REBOILER	KETTLE									
											1
	LEAN AMINE AIR COOLER	1									1
		+								<u> </u>	+
		+								+	+
		<u> </u>									
	+	+								<u> </u>	+
		+								+	
		+								<u> </u>	
	<u> </u>	<u> </u>								<u> </u>	
FWI -110/45	<u> </u>	<u> </u>		BASE: EQLIST0_00.XI					PRINTED ON:	<u> </u>	24/06/2015

		PRELIMINAR	Y EQUIPMENT LIS	ST-CO2 REMOV	AL SYSTEM	REVISION	DATE	BY	СНКД	APP	SHEET
FOS	TER 🕅 WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	3
		PROJECT NAME:	TECHNO-ECONOMIC	C EVALUATION OF H	2 PRODUCTION						OF
			WITH CO2 CAPTURE	E							
		FWI CONTRACT:	1BD0840A								_
		LOCATION	THE NETHERLAND								
		CASE	HYDROGEN PLANT								5
			SYNGAS WITH H2 RI		IERS						_
		UNIT	CO2 REMOVAL SYST	IEM							
			DUTY	AREA	DESIGN PRESSURE	DESIGN TEMPERATURE					
ITEM No.	DESCRIPTION	TYPE			SS/TS	SS/TS	MATERIAL	REW	IARKS		REV.
			MM kcal/h	m²	MPa	°C					
PUMPS											
	BOOSTER PUMPS	CENTRIFUGAL	Power: 586								
	LEAN PUMP	CENTRIFUGAL									
		OENTRI OOAE									
	AMINE SOLUTION PUMP										
	CO2 PUMP (CO2 COMPRESSOR PACKAGE)	CENTRIFUGAL		-							
											-
	•	1				1				1	1
	T										
						1		1			
											+
		1			1	1					+
L						ļ					
FWI -110/45	1			BASE: EQLIST0_00.X	LT				PRINTED ON:	1	24/06/2015

		PR	ELIMINARY E	QUIPMENT LIS	ST	REVISION	DATE	BY	CHKD	APP	SHEET
FOS	TER 🕅 VVHEELER	CLIENT: IEA GHG TECHNO-ECONOMIC EVALUATION OF H 2 PRODUCTION WITH CO2 CAPTURE FWI CONTRACT: 1BD0840A				Draft	April 2015	GA	GC	GC	4
		PROJECT NAME:		IC EVALUATION OF H 2	PRODUCTION WITH						OF
		FWI CONTRACT:									
		LOCATION	THE NETHERLAND								
		CASE	HYDROGEN PLANT	WITH CO2 CAPTURE-0	CAPTURE FROM						5
				RICH SMR FUEL BURNE	RS						_
		UNIT	CO2 REMOVAL SYS	IEM							
				PRESSURE	DESIGN						
ITEM No.	DESCRIPTION	ТҮРЕ	FLOW	INLET/OUTLET	PRESSURE	Brake Power	MATERIAL	REM	IARKS		REV.
			Nm³/h	MPa	MPa	kW	CASING/IMPELLER				
COMPRESSORS &	BLOWERS										
	CO2 COMPRESSORS	CENTRIFUGAL	31357					seven Stages, Pin= 0 Tin =49°C, Tout=24° motor to	ver: 3639 kW .29 MPa, Pout= 11 MPa, 'C, MW=42.9, Electical be included		
									e includes 3 separators a trim coolers		
											-
											-
											+
				1							

(A	PRE	LIMINARY E	QUIPMENT LIS	ST	REVISION	DATE	BY	СНКД	APP	SHEET
(FOS	TER WHEELER	PROJECT NAME: TECHNO-ECONOMIC EVALUATION OF H 2 PRODUCTION WITH CO2 CAPTURE			Draft	April 2015	GA	GC	GC	5	
		PROJECT NAME:		C EVALUATION OF H 2	PRODUCTION WITH						OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								-
		CASE		WITH CO2 CAPTURE-C	APTURE FROM						5
			SYNGAS WITH H2 R	ICH SMR FUEL BURNE	RS					-	_
		UNIT	CO2 REMOVAL SYS	TEM							
				PRESSURE	DESIGN						
ITEM No.	DESCRIPTION	ТҮРЕ	FLOW	INLET/OUTLET	PRESSURE	Brake Power	MATERIAL	DEM	IARKS		REV.
TTEM NO.	DESCRIPTION	TIFE	Nm³/h	MPa	МРа	kW	CASING/IMPELLER				KEV.
MISCELLANEA										1	
	DRYER UNIT PACKAGE	MOLSIV	33509					max H2O in outle	et stream= 50 ppm v		
		MOLSIV	33309					max rizo in oute	a stream - 50 ppm v		
											_
											1
											-
											+
											1
											1
			1							1	-
			+								
											<u> </u>
WI -110/45				BASE: EQLIST0_00.XLT					PRINTED ON:		24/06/2015

	PR	ELIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER	CLIENT:	IEA GHG	0	April 2015	GA	GC	GC	1
_	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE FOR INDUSTRY						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	CASE 1B: H2 PLANT WITH CO2 CAPTURE FROM SYNGAS						1
	CASE	USING MDEA WITH H2 RICH FUEL FIRING BURNERS						1
	UNIT	POWER ISLAND						

				PRESSURE	DESIGN	DESIGN			
ITEM No.	DESCRIPTION	ТҮРЕ	SIZE	INLET/OUTLET	PRESSURE	TEMPERATURE	MATERIAL	REMARKS	REV.
			-	MPa	MPa	°C			
POWER ISLAND									
	STEAM TURBINE AND GENERATOR PACKAGE								1
	Including								
	STEAM TURBINE	Backpressure type	8 MWe	4.2 / 0.55				Including: lube oil system; Cooling system;	-
								Hydraulic control system;	
								Seal system Drainage system Gland condenser	
	STEAM TURBINE GENERATOR		9.5 MVA					Including relevant auxiliaries	1
	STEAM TURBINE BYPASS SYSTEM								

	PRE	ELIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER	CLIENT:	IEA GHG	0	April 2015	GA	GC	GC	1
2	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE FOR INDUSTRY						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	CASE 1B: H2 PLANT WITH CO2 CAPTURE FROM SYNGAS USING MDEA WITH H2 RICH FUEL FIRING BURNERS						3
	UNIT	UTILITIES AND BOP						

			SIZE	PRESSURE	DESIGN	DESIGN			
ITEM No.	DESCRIPTION	TYPE		INLET/OUTLET	PRESSURE	TEMPERATURE	MATERIAL	REMARKS	REV
			-	MPa	MPa	°C			
OOLING WATER S	SYSTEM								
	SEA WATER PUMPS	Centrifugal	3000 m3/h x 25 m 300 kWe					One operating one spare	
	SEA WATER / CLOSED COOLING WATER EXCHANGER		14.7 MWth						
	CLOSED COOLING WATER PUMPS		1200 m3/h x 25 m 132 kW					One operating one spare	
			132 kW						
	CLOSED COOLING WATER CIRCUIT EXPANSION DRUM								
	CORROSION INHIBITOR PACKAGE								
INSTRUMENT / PI	LANT AIR SYSTEM								
	AIR COMPRESSOR PACKAGE							including: - Air Compressor	
								 Inter/after coolers KO Drums (including final KO drum) 	
	AIR DRYING PACKAGE	Adsorption bed	200 Nm3/h					including:	
		Ausoiption bed	200 Nillon					 Adsorbent Bed (with automatic regenaration system) Regeneration Electrical Heater 	
								- Pre Filters - After Filters	
								* Alter Filters	
	IA RECEIVER DRUM	vertical							
			1						

	PRE	ELIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER	CLIENT:	IEA GHG						2
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE FOR INDUSTRY						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	CASE 1B: H2 PLANT WITH CO2 CAPTURE FROM SYNGAS USING MDEA WITH H2 RICH FUEL FIRING BURNERS						3
	UNIT	UTILITIES AND BOP						

ITEM No.	DESCRIPTION	TYPE	SIZE	PRESSURE	DESIGN PRESSURE	DESIGN TEMPERATURE	MATERIAL	REMARKS	RI
TILWIND.		1172		INLET/OUTLET			MATERIAL	REMARKS	
			-	MPa	MPa	°C			_
RAW / DEMI WATI	ER SYSTEM								_
	RAW WATER TANK	Fixed roof						12 h storage	
	RAW WATER FILTRATION PACKAGE		85 m3/h						1
	POTABLE WATER TANK	Fixed roof						12 h storage	
	POTABLE WATER PACKAGE								
	DEMI WATER PLANT FEED PUMP		85 m3/h x 25 m 11 kW						
									_
	DEMI WATER PACKAGE UNIT		65 m3/h DW production					- Multimedia filter	
								Reverse Osmosis (RO) Cartidge filter Electro de-ionization system	_
			65 m3/h x 50 m						_
	DEMIWATER PUMPS		18.5 kW						_
									_
	DEMIWATER TANK	Fixed roof						12 h storage	
									+-
									-
									+
									 +
									+
									+
									+

	PRE	LIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
(FOSTER WHEELER)	CLIENT:	CLIENT: IEA GHG						3
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE FOR INDUSTRY						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	CASE 1B: H2 PLANT WITH CO2 CAPTURE FROM SYNGAS						3
	CASE	USING MDEA WITH H2 RICH FUEL FIRING BURNERS						
	UNIT	UTILITIES AND BOP						

			SIZE	PRESSURE	DESIGN	DESIGN			
ITEM No.	DESCRIPTION	TYPE		INLET/OUTLET	PRESSURE	TEMPERATURE	MATERIAL	REMARKS	REV.
			-	MPa	MPa	°C			
NITROGEN GENERA	ATION PACKAGE								
	NITROGEN PRODUCTION PACKAGE		500 Nm3/h					Including: - Intake Air Filter	
								- Air Compressor - Air Receiver - Inter/after coolers	
								- Molecular Sieve Water Absorber (Air Dryer)	
								- Chiller Unit - One Expansion Turbine	-
								- One Cryogenic Distillation Column - One Main Heat Exchanger	-
	LIQUID NITROGEN STORAGE AND VAPORISATION PACKAGE		500 Nm3/h					Including:	
								- Liquid Nitrogen Storage tank - Nitrogen Vaporizer (Air Fin Type) - Nitrogen heater (electrical)	
	GASEOUS NITROGEN BUFFER VESSEL							- Hill ogen neater (electrical)	
	GASEOUS NIROGEN BUFFER VESSEL								+
FLARE SYSTEM									<u> </u>
	FLARE KO DRUM	Horizontal							
	FLARE PACKAGE		Max relief flowrate 135,000 kg/h; MW:12					Including riser; tip, seal drum	
	FLARE KO DRUM PUMPS	Centrifugal						One operating one spare	
BoP									
	INTERCONNECTING								
	BUILDING (CONTROL ROOM, ELECTRICAL SUBSTATION, LAB)								
	DRAIN SYSTEM								
	FIRE FIGHTING								
	ELECTRICAL SYSTEM							Up to generator terminals	
									1

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 47 of 112

5. Case 2A

5.1. Basis of Design

This section should be referred to Annex I - Reference Document (Task 2) - for the general plant design criteria and assumptions used in the development of Case 2A (Hydrogen Plant with CO₂ Capture from PSA Tail Gas using MDEA).

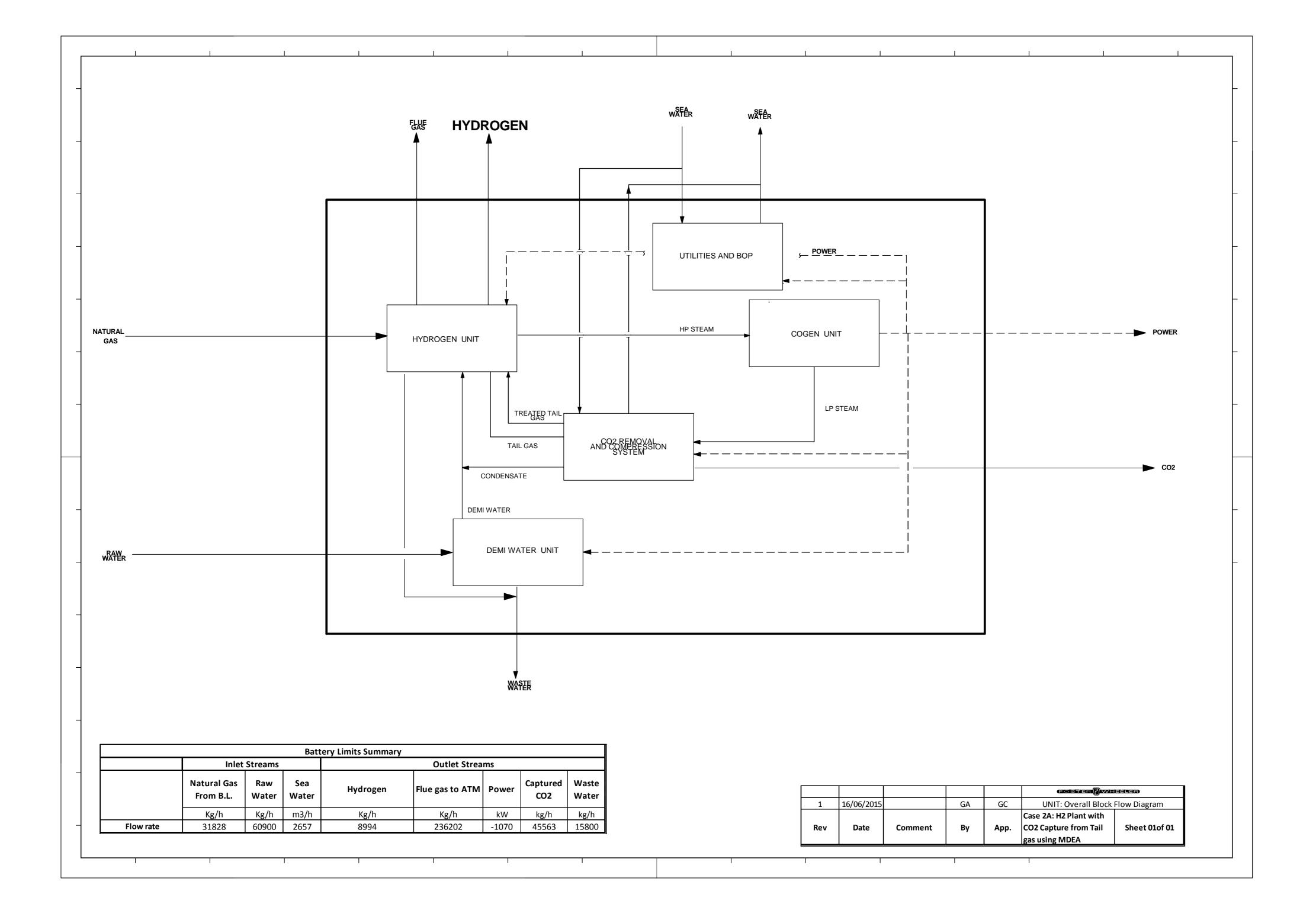
IEAGHG

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

December 2016 Sheet: 48 of 112

5.2. Units Arrangement


The units included in Case 2A (Hydrogen Plant with CO_2 Capture from PSA Tail Gas using MDEA) are as follows:

- Hydrogen Plant
- Cogen Plant (Power Island)
- CO₂ Capture System (Capture from PSA Tail Gas using MDEA)
- CO₂ compression and dehydration
- Demi-Water Plant
- Utilities and Balance of Plant (BoP), consisting of:
 - Cooling Water System
 - Instrument/Plant Air System
 - Nitrogen Generation Package
 - Flare System
 - Interconnecting
 - Drain System
 - Buildings (Control Room, Laboratories, Electrical Sub-Station).

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 49 of 112

5.3. Overall Block Flow Diagram

The BFD presented in the next page shows the different unit processes and the relevant inlet/outlet streams included in the Hydrogen Plant for Case 2A (with CO₂ Capture from PSA Tail Gas using MDEA).

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 50 of 112

5.4. Process Description

This section presents the description of the key processes included in the Hydrogen Plant with CO₂ capture from the PSA tail gas using MDEA (Case 2A)

5.4.1. Hydrogen Plant

This section makes reference to the Process Flow Diagram presented in Sheet 1 of Section 5.5.

The Hydrogen Plant for Case 2A is analogous to the Hydrogen Plant reported in Case 1A.

For the description of the different processes relevant to the hydrogen production should be referred to Section 2.4.1 with a caveat that the Tail Gas from the PSA is compressed and fed into the CO₂ capture plant (unlike in the Base Case where PSA Tail Gas is directly sent to the SMR burners).

Additionally, similar to Case 1A, the convective section of the steam reformer has a Steam Generation Coil and Steam Superheater Coil with larger duty (as compared to Base Case) and an additional BFW Pre-heater Coil. This is to provide the extra capacity to generate the steam required by the CO_2 capture plant.

The PSA unit should have the same size and capacity to the PSA unit of the Base Case (as the same amount of Shifted Syngas to be processed – unlike in Case 1A where it has a smaller volume to be processed due to removal of CO_2).

5.4.2. <u>CO2 Capture Plant (MDEA based Chemical Absorption Technology)</u>

This section makes reference to the Process Flow Diagram presented in Sheets 1 and 2 of Section 5.5.

The Tail Gas from the PSA (containing around 51% mol of CO_2 – wet basis) is initially compressed from ~0.2 MPa to 1 MPa before being fed into the bottom of the Absorption Column where the CO_2 in the Tail Gas is removed by contacting with the lean solvent (flowing in counter-current direction).

The washed tail gas, now containing 3.5% mol of CO₂ (wet basis) leaves the top of the Absorber Column and is pre-heated and expanded to around 0.15 MPa before being fed to the burners of the steam reformer. Whilst, the rich solvent collected at the bottom of the Abosrber Column is fed into the Flash Drum.

The vapour (flashed gas) released from the Flash Drum is sent to the burners as additional fuel to the steam reformer. Whilst, the rich solvent leaving the bottom of the Flash Drum is sent to

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 51 of 112

the Lean/Rich Heat Exchanger to be heated by the incoming stream of hot lean solvent coming from the Stripper's Reboiler. The hot rich solvent leaving the Lean/Rich Heat Exchanger is then fed into the top of the Stripper Column.

In the Stripper Column, the rich solvent flowing down from the top of the column is stripped of its CO_2 by the vapour generated from the Stripper's Reboiler.

The Stripper's Reboiler generates vapour (mainly steam) by re-boiling the lean solvent coming from the Stripper bottom. The vapour is then sent back to the bottom of the Stripper Column and travels upward to strip the CO₂ from the solvent flowing downward.

The Stripper's Reboiler is heated by the LP steam coming from the back pressure steam turbine of the Cogen Plant. The condensate recovered from the reboiler is sent back to the Hydrogen Plant's BFW system.

The overhead gas from the Stripper Column is then sent to the Stripper's Condenser where the steam in the overhead gas are condensed, collected and returned as a reflux to the Stripper Column.

The CO_2 rich gas from the Stripper's Condenser is then sent to the CO_2 compression and dehydration unit.

5.4.3. <u>CO2 Compression and Dehydration</u>

This section makes reference to the Process Flow Diagram presented in Sheet 3 of Section 5.5.

The CO_2 Compression and Dehyrdation Unit for Case 2A has a similar scheme to the CO_2 compressor used in Case 1A. For the description of the CO_2 Compression and Dehydration Unit, this should be referred to Section 3.4.3.

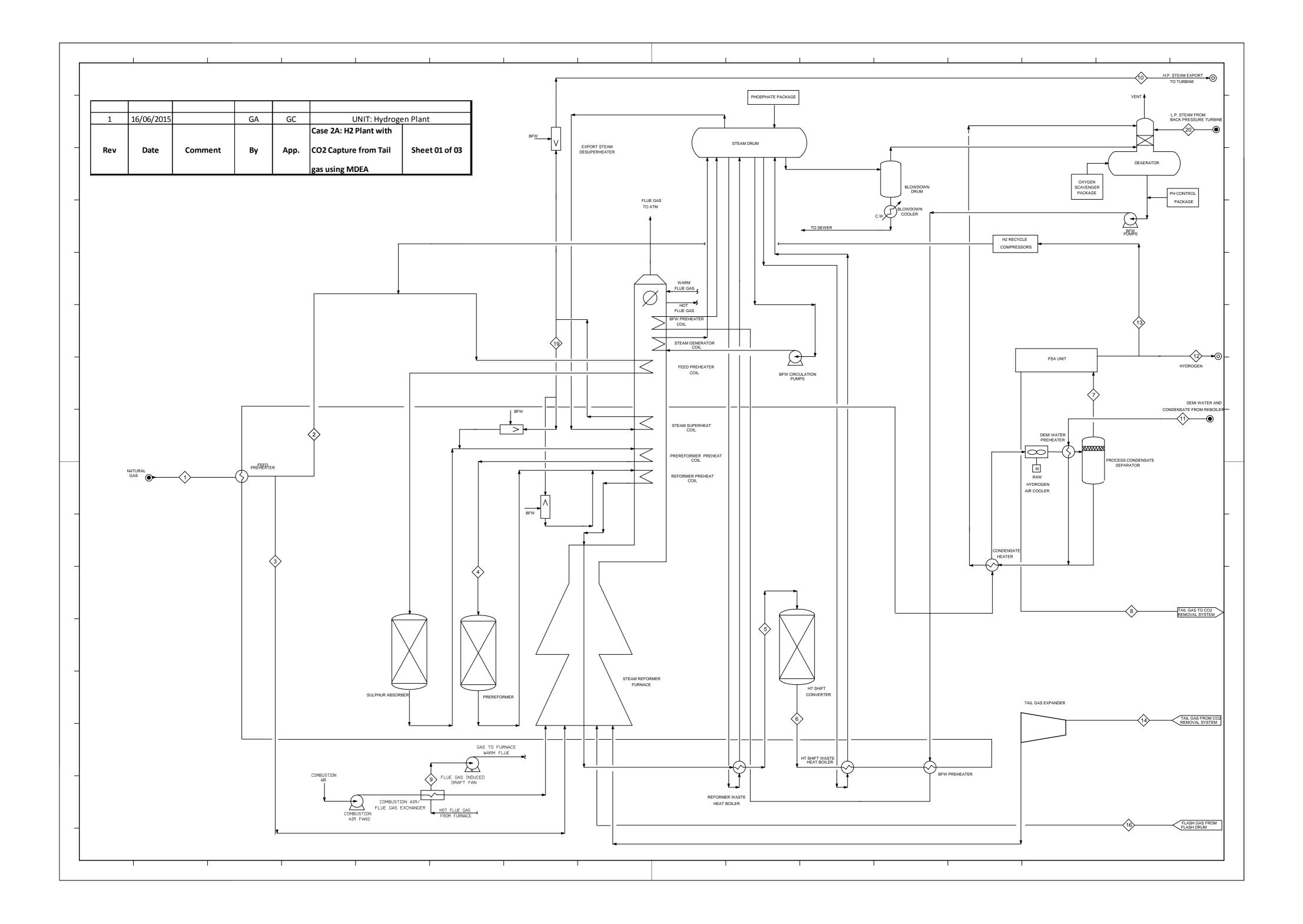
5.4.4. Cogen Plant (Power Island)

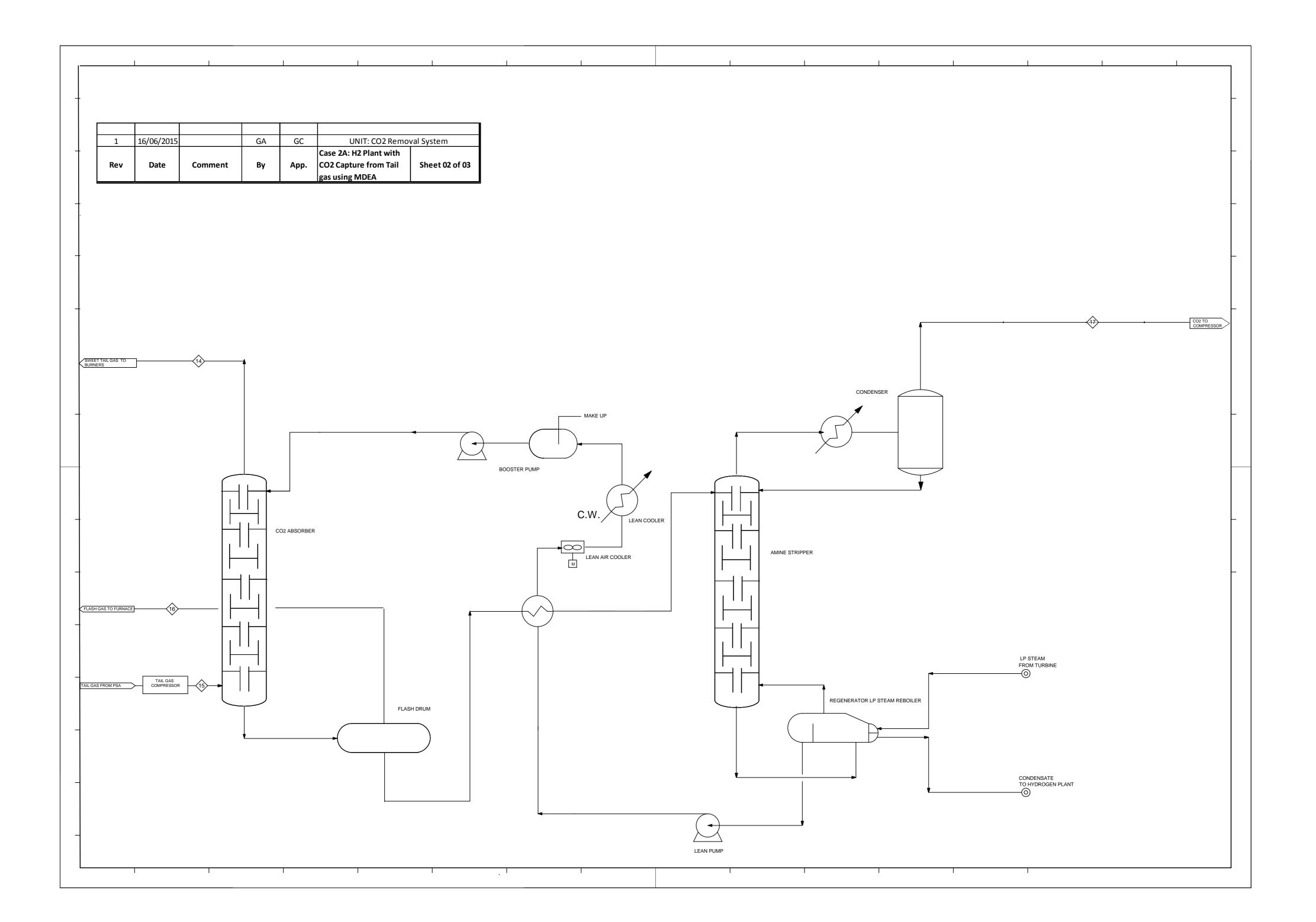
The Cogen Plant for Case 2A is also based on a back-pressure type steam turbine. For the description of the Cogen Plant, this should be referred to section 3.4.4.

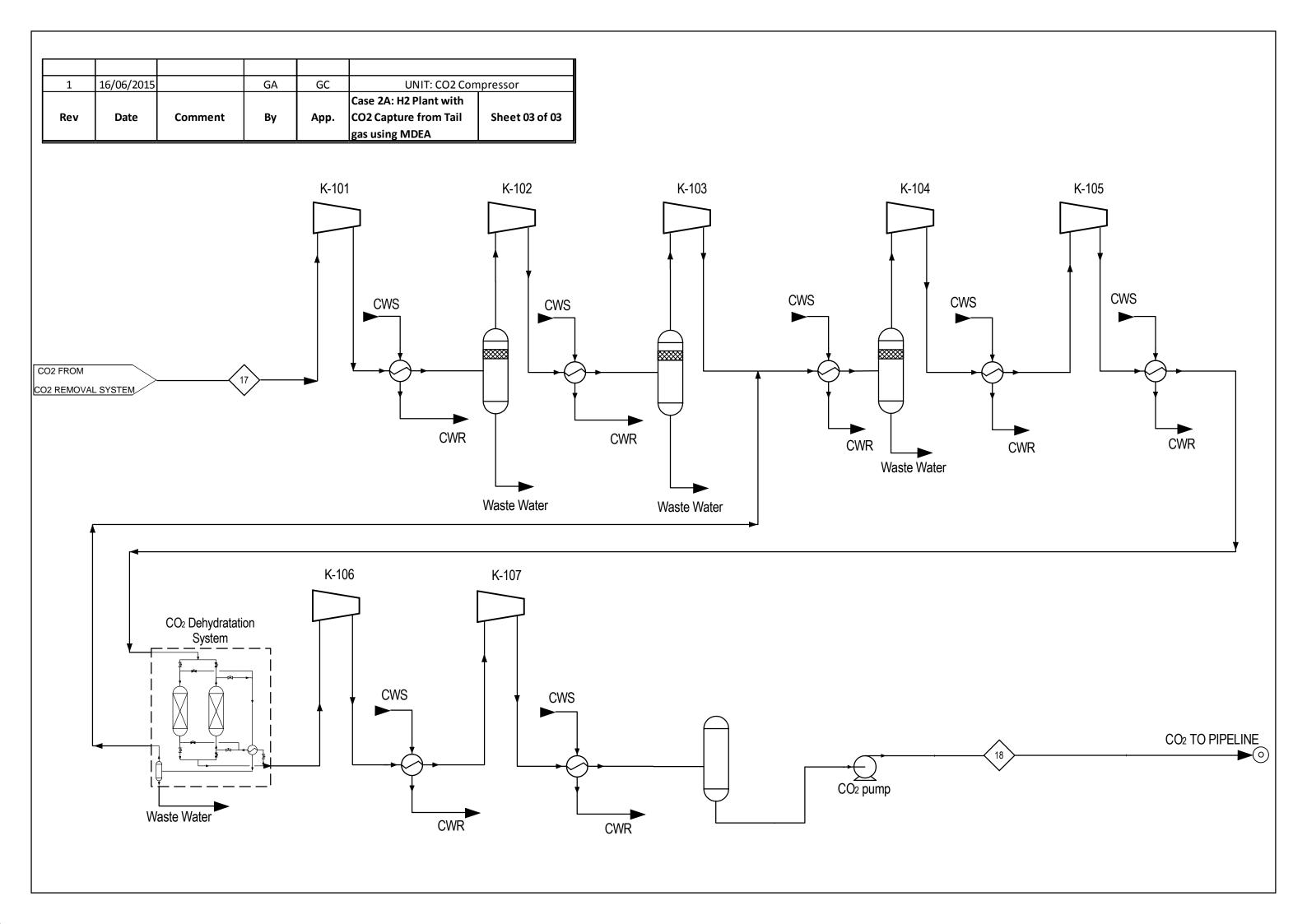
5.4.5. <u>Demi-Water Plant/Cooling Water System</u>

The Demi-Water Plant and Cooling Water System for Case 2A has similar scheme used in Case 1A as described in Section 3.4.5.

5.4.6. Balance of Plant (BoP)


The operation of the whole plant is supported by additional utilities and facilities. These are presented in Section 2.4.4.


: December	2016
Sheet: 52 c	of 112


5.5. Process Flow Diagram (Hydrogen Plant and CO₂ Capture System)

The PFDs enclosed shows the different processes included in the Hydrogen Plant, the CO₂ Capture Plant and the CO₂ Compression and Dehydration Unit.

The processes involving the Hydrogen Plant are described in Section 2.4. The processes involving the CO_2 capture plant and the CO_2 Compression and Dehydration Unit are described in Sections 3.4 and 5.4.2.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 53 of 112

5.6. Heat and Mass Balance

The heat and mass balances reported in this section makes reference to the Process Flow Diagram presented in Section 5.5.

FOSTER VHEELER									HEAT AND MATERIAL BALANCE Case 2A - Hydrogen Plant with CO2 capture from tail gas using MDEA					
CLIENT: IEA GHG									REV	DATE	BY	СНКД	APP	
PROJECT NAME:		TECHNO-ECONOMIC EVALUATION OF H2 PRODUCTION WITH CO2 CAPTURE								April 2015	GA	CG	CG	
FWI CONTRACT: 1BD0840A									1	June 2015	GA	CG	CG	
OCATION: THE NETHERLAND														
		1	1	1		1 1		1	1	1	1	1		
Stream		1	2	3	4	5	6	7	8	9	10	11	12	
Description		Natural Gas From B.L.	Natural Gas feedstock to Hydrogen Plant	Natural Gas fuel to burners	Purified Feedstock to Pre-reformer	HTS Reactor inlet	HTS Reactor Outlet	PSA inlet	PSA Tail gas to tail gas compressor	Flue gas to ATM	HP Steam export	Demi Water (make up) and condensate from Stripper reboiler		
Temperature	°C	9	126	118	500	320	412	35	28	135	394	15	40	
Pressure	MPa	7.00	3.71	0.50	3.39	2.82	2.77	2.58	0.13	0.02	4.23	0.60	2.50	
Molar Flow	kmol/h	1766.6	1455.8	310.9	5514.0	8370.3	8370.3	6596.9	2106.3	8488.6	3850.9	6378.0	4461.5	
Mass Flow	kg/h	31828	26231	5597	98874	101667	101667	69711	60658	236208	69375	114900	8994	
Composition														
CO2	mol/mol	0.0200	0.0200	0.0200	0.0053	0.0492	0.1283	0.1627	0.5095	0.1036	0.0000	0.0000	0.0000	
СО	mol/mol	0.0000	0.0000	0.0000	0.0000	0.1156	0.0366	0.0464	0.1454	(2)	0.0000	0.0000	0.0000	
Hydrogen	mol/mol	0.0000	0.0000	0.0000	0.0053	0.5171	0.5961	0.7563	0.2369	0.0000	0.0000	0.0000	0.9999+	
Nitrogen	mol/mol	0.0089	0.0089	0.0089	0.0023	0.0015	0.0015	0.0020	0.0062	0.6942	0.0000	0.0000	0.0000	
Oxygen	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0126	0.0000	0.0000	0.0000	
Methane	mol/mol	0.8900	0.8900	0.8900	0.2350	0.0238	0.0238	0.0302	0.0945	0.0000	0.0000	0.0000	0.0000	
Ethane	mol/mol	0.0700	0.0700	0.0700	0.0185	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Propane	mol/mol	0.0100	0.0100	0.0100	0.0026	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
n-Butane	mol/mol	0.0010	0.0010	0.0010	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
n-Pentane	mol/mol	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
H2O	mol/mol	0.0000	0.0000	0.0000	0.7307	0.2927	0.2137	0.0024	0.0076	0.1894	1.0000	1.0000	0.0000	
Contaminants:														
H2S	ppm v	(1)												
NOx	mg/Nm3									120 max				
Notes:		(1) For feedstock pu (2) 30 mg/Nm3 max		sign purposes 5 ppmv	of H2S have been a	assumed in NG to Hyd	rogen Plant							

CLIENT:		IEA GHG														
									REV	DATE	BY GA	CHKD CG	APP CG			
PROJECT NAME: TECHNO-ECONOMIC EVALUATION OF H2 PRODUCTION WITH CO2_CAPTURE									0	April 2015						
FWI CONTRACT: 1BD0840A									1	June 2015	GA	CG	CG			
OCATION:		THE NETHERLANI	D													
Stream		13	14	15	16	17	18	19	20			<u> </u>				
Description			Swoot Toil gas to		Flash gas to steam reformer furnace	CO2 from capture plant to Compressor		HP steam to process	LP Steam from BP Turbine to Deareator							
Femperature	°C	40	44	28	74	49	24	400	177			1				
Pressure	MPa	2.51	0.98	1.00	0.45	0.29	11.00	4.29	0.44							
Iolar Flow	kmol/h	29.1	1062.9	2106.3	0.8	1080.0	1035.9	4157.2	36.6							
Mass Flow	kg/h	59	14939	60658	20	46362	45570	74892	660							
Composition																
CO2	mol/mol	0.0000	0.0354	0.5095	0.3637	0.9585	0.9994	0.0000	0.0000			+				
CO	mol/mol	0.0000	0.2878	0.1454	0.1499	0.0001	0.0001	0.0000	0.0000			+				
Hydrogen	mol/mol	0.9999+	0.4694	0.2369	0.2633	0.0002	0.0002	0.0000	0.0000			+	1			
Nitrogen	mol/mol	0.0000	0.0122	0.0062	0.0052	0.0000	0.0000	0.0000	0.0000			1				
Oxygen	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000							
Methane	mol/mol	0.0000	0.1870	0.0945	0.1482	0.0002	0.0003	0.0000	0.0000							
Ethane	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000							
Propane	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000							
n-Butane	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000							
n-Pentane	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000							
H2O	mol/mol	0.0000	0.0080	0.0076	0.0697	0.0409	0.0000	1.0000	1.0000							
Contaminants:												+				
12S	ppm v											1	1			
Юx	mg/Nm3															
												_	<u> </u>			

Revision No.: FINAL

Date:

December 2016

Sheet: 54 of 112

5.7. Plant Performance Data

Techno-Economic Evaluation of Standalone (Merchant) H2 Plant

The table below summarizes the energy performance and CO_2 emissions relevant to the Hydrogen Plant with CO_2 Capture from PSA Tail Gas using MDEA.

Plant Performance Data Case 2A		
INLET STREAMS		
Natural Gas (as Feedstock)	t/h	26.231
Natural Gas (as Fuel)	t/h	5.597
Natural Gas (Total Consumption)	t/h	31.828
Natural Gas LHV	MJ/kg	46.50
Total Energy Input	MW	411.11
OUTLET STREAMS		
Hydrogen Product to BL	t/h	8.994
	Nm³/h	100,000
Hydrogen LHV	MJ/kg	119.96
Total Energy in the Product	MW	299.70
POWER BALANCE		
Gross Power Output from the COGEN Plant	MWe	6.900
Hydrogen Plant Power Consumption	MWe	-1.264
COGEN Plant + Utilities + BoP Consumption	MWe	-0.397
CO2 Capture Plant Consumption	MWe	-4.575
Gross Power Output from PSA Tail Gas Expander	MWe	1.140
CO2 Compression and Dehydration Unit	MWe	-2.874
Imported Power from the Grid	MWe	-1.070
SPECIFIC CONSUMPTIONS		
Natural Gas (as Feedstock) GJ/100	00 Nm ³ H ₂	12.197
Natural Gas (as Fuel) GJ/100	00 Nm ³ H ₂	2.603
Feed + Fuel GJ/100	00 Nm ³ H ₂	14.800
SPECIFIC EMISSIONS		
Specific CO2 Emission t/100	0 Nm ³ H ₂	0.3870
Specific CO2 Captured t/100	0 Nm ³ H ₂	0.4556
Overall CO2 Capture Rate (Case Specific)		54.07%
Overall CO2 Capture Rate (as Compared to Base Case)		52.16%

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 55 of 112

5.8. Preliminary Utilities Consumption

This section presents the different utilities consumption (usage) of the Hydrogen Plant, Power Island, CO₂ Capture Plant, CO₂ Compression and Dehydration, and others.

FOSTER	ELER						ESTIM	IATED	UTILIT		ISUMF	TIONS	6			
CUSTOMER NAME: IEAGHG						Case 2A -	Hydrogen	REV.	REV. 0	REV. 1	REV. 2					SHEET
PROJECT NAME: TECHNO-ECONOMIC EVALUATIO	N OF H2 PRODU	ICTION WIT	TH CO2 CA	PTURE		Plant w	ith CO2	BY	GA	GA						1
FWI CONTRACT: 1BD0840 A						capture fro	om tail gas	СНКД	GC	GC						OF
LOCATION: THE NETHERLAND						using		DATE	April 2015	June 2015						1
	ELECTRIC	POWER		STEAM t/h		EFFLUENT		DMW	RAW WATER		G WATER	SEA \	WATER	FUEL	INSTR. AIR	Nitrogen
	LOAD BHP	kW	LP	MP	HP	t/h	t/h	t/h	t/h	ΔT (°C)	m³/hr	ΔT (°C)	m³/hr	MMKcal/h	Nm ³ /h	Nm³/h
HYDROGEN PLANT		1,264	0.66	0.00		-1.72	-43.8 (2)	114.9 (1)	0.00	11	11.7			62.2	100	(250)
					-69.4											
CO2 CAPTURE (INCLUDING TAIL GAS		4,575	66.9		1.8			0.66		11	828	7	438			
COMPRESSOR)		-1,140						-68.7								
CO2 COMPRESSION		2,874								11	37	7	840			
POWER ISLAND			0= 0		67.6											
		-6,900	-67.6													
		397				-14.1			60.9	11	-877	7	1,379	0.5	100	(250)
UTILITIES / BoP								-46.8							-200	(-500)
TOTAL		1,070	0	0	0	-15.8	-43.8	0	60.9	-	0	-	2,657	62.7	0	0
						(2) Losses	includes w	ater consun	s condensate ned in the re VWT) include	action and o	deaerator ve	ent	m blowdow	n in the hydro	ogen plant	

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 56 of 112

5.9. Preliminary Equipment List and Size of Main Components/Packages

This section presents the preliminary list of equipment and main components/packages relevant to the Power Island, CO₂ Capture Plant, CO₂ Compression and Dehydration and BoP of Case 2A.

For the equipment list and size of main components relevant to the Hydrogen Plant should be referred to Section 3.9.

		PRELIMINA	ARY EQUIPMENT	LIST-CO2 REMO	VAL SYSTEM	REVISION	DATE	BY	CHKD	APP	SHEET
		CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	1
FOS	TER 🖉 WHEELER		TECHNO-ECONOMI	C EVALUATION OF H	2 PRODUCTION WITH						
		PROJECT NAME:	CO2 CAPTURE								OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								-
		CASE		EN PLANT WITH CO2	CAPTURE FROM TAIL						5
		CAGE	GAS USING MDEA								
		UNIT	CO2 REMOVAL SYS	STEM							
			S	DESIGN	MATERIAL						
ITEM No.	DESCRIPTION	TYPE	ID	ID L/H		PRESSURE TEMPERATURE		REM	ARKS		REV.
			mm	mm	MPa	°C					
TOWERS											
	ABSORBER	VERTICAL	3399	20000	28 & F.V	150					
										1	
	STRIPPER	VERTICAL	EAFE	20000	3.5 & F.V	170					
		VERTICAL	5155	20000	3.9 & F.V	170					
RUMS											
	FLASH DRUM	HORIZONTAL									
	AMINE SOLUTION TANK	HORIZONTAL									
										1	
		1									
										1	
			+	+							
						ļ					
WI -110/45	1	1		BASE: EQLIST0_00.XL	Т				PRINTED ON:		24/06/2015

		PRELIMINAR	EQUIPMENT LIS	ST-CO2 REMOV	AL SYSTEM	REVISION	DATE	BY	CHKD	APP	SHEET
FOS	TER 🕅 WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	2
		PROJECT NAME:	TECHNO-ECONOMIC	C EVALUATION OF H	2 PRODUCTION						OF
			WITH CO2 CAPTURE	=							
		FWI CONTRACT:	1BD0840A								_
		LOCATION	THE NETHERLAND	N PLANT WITH CO2	CAPTURE FROM						
		CASE CASE 2A: HYDROGEN PLANT WITH CO2 CAPTURE FROM TAIL GAS USING MDEA									5
		UNIT	CO2 REMOVAL SYS	TEM							
			DESIGN PRESSURE	DESIGN TEMPERATURE							
ITEM No.	DESCRIPTION	TYPE			SS / TS	SS / TS	MATERIAL	REMARKS			REV.
			MM kcal/h	m²	MPa	°C					
HEAT EXCHANGE	R <u>S</u>										
	LEAN/RICH AMINE EXCHANGER	SHELL & TUBE									
											+
											+
	LEAN AMINE TRIM COOLER	SHELL & TUBE									
										-	
	STRIPPER CONDENSER										
	STRIPPER REBOILER	KETTLE									
											+
											+
	LEAN AIR COOLER										
											1
								-			
											<u> </u>
											+
								ļ			
FWI -110/45	•	•		BASE: EQLIST0_00.XI	т	•	•		PRINTED ON:		24/06/2015

		PRELIMINAR	Y EQUIPMENT LI	ST-CO2 REMOV	AL SYSTEM	REVISION	DATE	BY	CHKD	APP	SHEET
FOS	TER 🕅 WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	3
	_	PROJECT NAME:	TECHNO-ECONOMI	C EVALUATION OF H	2 PRODUCTION						OF
		PROJECT NAME:	WITH CO2 CAPTURI	E							UF
		FWI CONTRACT:	1BD0840A								_
		LOCATION	THE NETHERLAND								
		CASE	CASE 2A: HYDROGE TAIL GAS USING ME		CAPTURE FROM						5
		UNIT	CO2 REMOVAL SYS	TEM							
			TYPE DUTY AREA DESIGN PRESSURE TI			DESIGN TEMPERATURE					
ITEM No.	DESCRIPTION	TYPE			SS / TS	SS / TS	MATERIAL	REMARKS			REV.
			MM kcal/h	m²	MPa	°C					
PUMPS											
	BOOSTER PUMPS	CENTRIFUGAL	Power: 181.1								
	LEAN PUMP	CENTRIFUGAL									
	AMINE SOLUTION PUMP										
	CO2 PUMP (CO2 COMPRESSOR PACKAGE)	CENTRIFUGAL									
											+
							<u> </u>				+
								-			
ļ											+
FWI -110/45				BASE: EQLIST0_00.XI	T				PRINTED ON:		24/06/2015

		PRE	LIMINARY E	QUIPMENT LIS	бТ	REVISION	DATE	BY	СНКД	APP	SHEET
FOS	TER 🖉 WHEELER		IEA GHG			0	April 2015	GA	GC	GC	4
		PROJECT NAME:	TECHNO-ECONOMIC CO2 CAPTURE	C EVALUATION OF H 2	PRODUCTION WITH	1	June 2015	GA	GC	GC	OF
		FWI CONTRACT:	1BD0840A								
			THE NETHERLAND								
		CASE	CASE 2A: HYDROGE TAIL GAS USING ME	EN PLANT WITH CO2 C	APTURE FROM						5
		UNIT	CO2 REMOVAL SYS	TEM							
				PRESSURE	DESIGN						
ITEM No.	DESCRIPTION	TYPE	FLOW	INLET/OUTLET	PRESSURE	Brake Power	MATERIAL	REM	ARKS		REV.
			Nm³/h	МРа	МРа	kW	CASING/IMPELLER				
COMPRESSORS &	BLOWERS										
	CO2 COMPRESSORS	CENTRIFUGAL	24207					seven Stages, Pin= 0. Tin =49°C, Tout=24° motor to b	er: 2809 kW 29 MPa, Pout= 11 MPa, C, MW=42.9, Electical e included cludes 3 separators and		
								seven tri	m coolers		
	TAIL GAS COMPRESSOR	INTEGRALLY GEARED	47204					Brake Power: 4280 kW three Stages, Pin= 0.12 Tin =28°C, Tout=28°C, motor to be included three trim coolers	26 MPa, Pout= 1 MPa,		
EXPANDER											
	SWEET TAIL GAS EXPANDER		24,000 Nm3/h					Generator design: 1.2 N	/We		
											1
											1
											1
WI -110/45				BASE: EQLIST0_00.XLT					PRINTED ON:		24/06/201

Come come come		FRE		QUIPMENT LIS	51	REVISION	DATE	BY	CHKD	APP	SHEET
FOS	TER 🖉 WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	5
		PROJECT NAME:	TECHNO-ECONOMI CO2 CAPTURE	C EVALUATION OF H 2	PRODUCTION WITH						OF
		FWI CONTRACT:	1BD0840A								1
		LOCATION	THE NETHERLAND								-
		CASE	CASE 2A: HYDROGE	EN PLANT WITH CO2 C	APTURE FROM						5
			TAIL GAS USING ME								_
		UNIT	CO2 REMOVAL SYSTEM								
				PRESSURE	DESIGN						
ITEM No.	DESCRIPTION	TYPE	FLOW INLET/OUTLET PRESSURE			Brake Power	MATERIAL	REM	INPKS		REV.
TIEM NO.	DESCRIPTION	TIFE	Nm³/h	MPa	МРа			REMARKS			REV.
			Nm /n	INIF a	MFa	kW	CASING/IMPELLER				
MISCELLANEA	1										
	DRYER UNIT PACKAGE	MOLSIV	25664					max H2O in outle	t stream= 50 ppm v		
											1
											+
											1
											-
		 									+
											+
											+
											<u> </u>
		1	1	1	1		1	1		1	1

	PR	ELIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER	CLIENT:	IEA GHG	0	April 2015	NF	GC	GC	1
_	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE FOR INDUSTRY						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	H2 PLANT WITH CO2 CAPTURE-CAPTURE FROM TAIL GAS						1
	CASE	CASE						
	UNIT	POWER ISLAND						

				PRESSURE	DESIGN	DESIGN			
ITEM No.	DESCRIPTION	TYPE	SIZE	INLET/OUTLET	PRESSURE	TEMPERATURE	MATERIAL	REMARKS	REV.
			-	MPa	MPa	°C			
POWER ISLAND									
	STEAM TURBINE AND GENERATOR PACKAGE								
	Including								
	STEAM TURBINE	Backpressure type	7.5 MWe	4.2 / 0.55				Including: lube oil system; Cooling system;	
								Hydraulic control system;	
								Seal system Drainage system Gland condenser	-
	STEAM TURBINE GENERATOR		9.5 MVA					Including relevant auxiliaries	
									-
	STEAM TURBINE BYPASS SYSTEM								-
									<u> </u>
									<u> </u>
									<u> </u>
									<u> </u>

	PRI	ELIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER	CLIENT: IEA GHG		0	April 2015	NF	GC	GC	1
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE FOR INDUSTRY						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						1
	CASE	H2 PLANT WITH CO2 CAPTURE-CAPTURE FROM TAIL GAS CASE						3
	UNIT	UTILITIES AND BOP						

			SIZE	PRESSURE	DESIGN PRESSURE	DESIGN TEMPERATURE			
ITEM No.	DESCRIPTION	TYPE		INLET/OUTLET			MATERIAL	REMARKS	RE
			-	MPa	MPa	°C			
DOLING WATER	SYSTEM								
	SEA WATER PUMPS	Centrifugal	2800 m3/h x 25 m 280 kWe					One operating one spare	
	SEA WATER / CLOSED COOLING WATER EXCHANGER		11.3 MWth						
	CLOSED COOLING WATER PUMPS		1000 m3/h x 25 m 110 kWe					One operating one spare	
	CLOSED COOLING WATER CIRCUIT EXPANSION DRUM								+
									+
	CORROSION INHIBITOR PACKAGE								+
	LANT AIR SYSTEM								+
									+
	AIR COMPRESSOR PACKAGE							including:	+
								 Air Compressor Inter/after coolers KO Drums (including final KO drum) 	 +
									-
	AIR DRYING PACKAGE	Adsorption bed	200 Nm3/h					including: - Adsorbent Bed (with	1
								automatic regenaration system) - Regeneration Electrical Heater - Pre Filters	
								- After Filters	
	IA RECEIVER DRUM	vertical							\square
									 _
									_

(III)	PRI	ELIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER	CLIENT:	IEA GHG						2
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE FOR INDUSTRY						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	H2 PLANT WITH CO2 CAPTURE-CAPTURE FROM TAIL GAS CASE						3
	UNIT	UTILITIES AND BOP						

ITEM No.	DESCRIPTION	ТҮРЕ	SIZE	PRESSURE INLET/OUTLET	DESIGN PRESSURE	DESIGN TEMPERATURE	MATERIAL	REMARKS	REV
			-	MPa	MPa	°C			
RAW / DEMI WATE	RSYSTEM								
	RAW WATER TANK	Fixed roof						12 h storage	
	RAW WATER FILTRATION PACKAGE		65 m3/h						
	POTABLE WATER TANK	Fixed roof						12 h storage	
	POTABLE WATER PACKAGE								
	DEMI WATER PLANT FEED PUMP		65 m3/h x 25 m 7.5 kW						
	DEMI WATER PACKAGE UNIT		50 m3/h DW production					Including: - Multimedia filter	
								 Reverse Osmosis (RO) Cartidge filter Electro de-ionization system 	
	DEMIWATER PUMPS		50 m3/h x 50 m 15 kW						
	DEMIWATER TANK	Fixed roof						12 h storage	

	PRE	LIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER	CLIENT:	CLIENT: IEA GHG		April 2015	NF	GC	GC	3
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE FOR INDUSTRY						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						1
	CASE	CASE 2A: HYDROGEN PLANT WITH CO2 CAPTURE FROM						3
	CASE	TAIL GAS USING MDEA						
	UNIT	UTILITIES AND BOP						

ITEM No.	DESCRIPTION	TYPE	SIZE	PRESSURE	DESIGN PRESSURE	DESIGN TEMPERATURE	MATERIAL	REMARKS		REV
ITEM NO.	DESCRIPTION	TTPE		INLET/OUTLET		WATERIAL		REMARKS		KEV.
			-	MPa	MPa	°C				+
ITROGEN GENER	ATION PACKAGE									
								Lot. Pro-		
	NITROGEN PRODUCTION PACKAGE		500 Nm3/h					Including: - Intake Air Filter - Air Compressor		
								- Air Compressor - Air Receiver - Inter/after coolers		
								- KO Drums - Molecular Sieve Water Absorber (Air Dryer)		
								- Chiller Unit - One Expansion Turbine		
								- One Cryogenic Distillation Column - One Main Heat Exchanger		+
										+
	LIQUID NITROGEN STORAGE AND VAPORISATION PACKAGE		500 Nm3/h					Including: - Liquid Nitrogen Storage tank		
								- Liquid Nitrogen Storage tank - Nitrogen Vaporizer (Air Fin Type) - Nitrogen heater (electrical)		+
								- Nitrogen heater (electrical)		
	GASEOUS NITROGEN BUFFER VESSEL									_
										_
LARE SYSTEM										
	FLARE KO DRUM	Horizontal								
	FLARE PACKAGE		Max relief flowrate 102,000 kg/h; MW:12					Including riser; tip, seal drum		
	FLARE KO DRUM PUMPS	Centrifugal						One operating one spare		
BoP										
	INTERCONNECTING									
	BUILDING (CONTROL ROOM, ELECTRICAL SUBSTATION, LAB)									
	DRAIN SYSTEM									
	FIRE FIGHTING									
	ELECTRICAL SYSTEM							Up to generator terminals		

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 57 of 112

6. Case 2B

6.1. Basis of Design

This section should be referred to Annex I - Reference Document (Task 2) - for the general plant design criteria and assumptions used in the development of Case 2B (Hydrogen Plant with CO₂ Capture from PSA Tail Gas using Cryogenic and Membrane Separation Technology).

IEAGHG

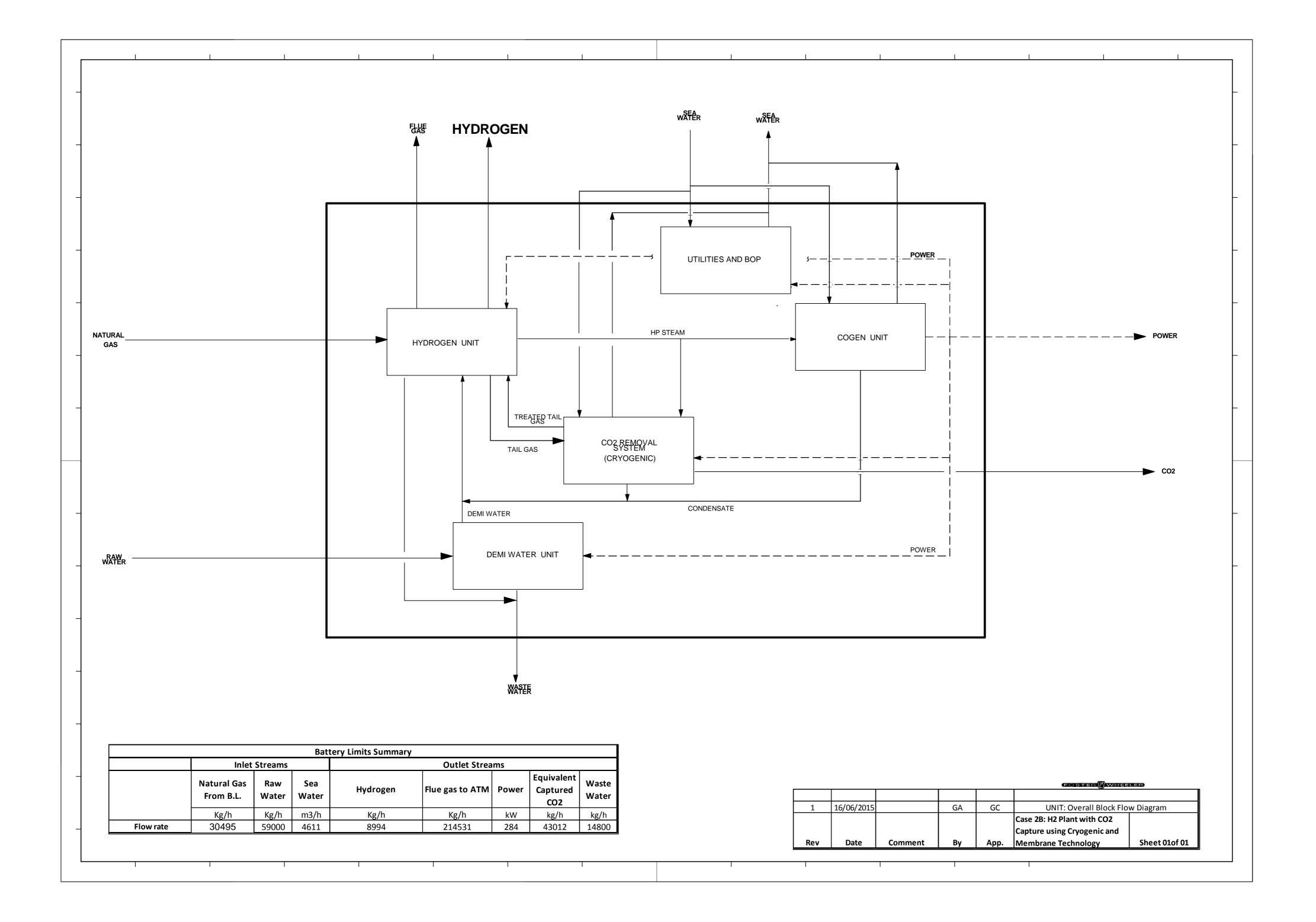
Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

December 2016

Sheet: 58 of 112

6.2. Units Arrangement


The units included in Case 2B (Hydrogen Plant with CO_2 Capture using Cryogenic and Membrane Technology) are as follows:

- Hydrogen Plant
- Cogen Plant (Power Island)
- CO₂ Capture System (Capture from PSA Tail Gas using Cryogenic and Membrane Separation Technology)
- Demi-Water Plant
- Utilities and Balance of Plant (BoP), consisting of:
 - Cooling Water System
 - Instrument/Plant Air System
 - Nitrogen Generation Package
 - Flare System
 - Interconnecting
 - Drain System
 - Buildings (Control Room, Laboratories, Electrical Sub-Station).

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 59 of 112

6.3. Overall Block Flow Diagram

The BFD presented in the next page shows the different unit processes and the relevant inlet/outlet streams included in Case 2B (Hydrogen Plant with CO₂ Capture using Cryogenic and Membrane Technology).

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 60 of 112

6.4. Process Description

This paragraph includes the description of the key processes included in the Hydrogen Plant with CO_2 capture from the PSA Tail Gas using Cryogenic and Membrane Separation Technology (Case 2B).

6.4.1. <u>Hydrogen Plant</u>

This section makes reference to the Process Flow Diagram presented in Sheet 1 of Section 6.5.

The Hydrogen Plant of Case 1B is identical to Hydrogen Plant reported in the Base Case except for the PSA Tail Gas being fed into the CO₂ capture plant.

For the description of the different processes relevant to the hydrogen production should be referred to Section 2.4.1 with a caveat that the Tail Gas from the PSA is compressed and fed into the CO₂ capture plant (unlike in the Base Case where PSA Tail Gas is directly sent to the SMR burners).

There will be no changes to the different heat exchanger coils within the convective section of the reformer (unlike in other CO_2 capture cases where additional steam is needed).

There is a possibility to recover more hydrogen from the vent gas coming from the membrane, however this option was not taken up due to the following reasons:

- The available heat in tail gas to burner will decrease if the hydrogen are recovered, therefore implying that additional natural gas will be burnt (as supplementary fuel) and consequently will increase the CO₂ emission.
- This study assumes that the volume of hydrogen production is fixed, therefore to incorporate the additional recovery of hydrogen in the vent will require a change in the design basis for the SMR.

6.4.2. <u>CO2 Capture Plant (Cryogenic and Membrane Separation Technology)</u>

The purpose of this unit is to compress, dry and cool the Tail Gas from the PSA in order to separate the CO_2 (via partial condensation) from the other gases (CH₄, CO, H₂).

Primarily, the technique used in the Cryogenic or Low Temperature Separation is based on the phase separation principles involving the partial condensation of the CO₂ and separating it from the gas phase in a separator column (i.e. flash or distillation column).

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant

IEAGHG

Revision No.: FINAL Date: December 2016

Sheet: 61 of 112

Nowadays, there are several industrial gas companies and equipment suppliers (e.g. Air Liquide, Air Products, Linde, Praxair, Alstom, and Flour) who have developed the cryogenic or low temperature separation technology suitable for separating CO2 from the tail gas of the hydrogen production. In particular, it should be noted that the Port Jerome project is first large scale pilot demonstration of the Air Liquide's CryocapTM technology to capture CO₂ from the Hydrogen Plants (please refer to Technical Review 3 of this study). Further development and demonstration are still required at commercial scale to fully validate the different processes.

This section makes reference to the Process Flow Diagram presented in Sheet 2 of Section 6.5.

In this study, the CO₂ Purification and Compression Unit (also known as CPU) consists of the following main sections:

- Tail Gas Compressor to compress the tail gas to the required operating pressure of the cold box.
- Dehydration Unit based on Temperature Swing Adsorption or TSA for dew point control.
- Cold Box based on an auto-refrigeration cycle using 3 flash columns configuration.
- Membrane Separation Unit for additional CO₂ recovery from the vent of the cold box.
- CO₂ Product Compressor to compress the CO₂ to its pipeline pressure of 110 Bar.

Tail Gas Compressor

The Tail Gas from PSA (containing around 51%mol of CO₂) is available to the CPU's battery limit at nearly atmospheric pressure. This is mixed with the CO2 rich permeate (coming from the membrane) and compressed to around 2.9 MPa via the Tail Gas Compressor before being fed into the dehydration unit.

The Tail Gas Compressor is an integrally geared centrifugal type compressor driven by an electric motor. This include anti-surge control, vent, inter-stage coolers, knock-out drum and condensate draining facilities as appropriate. Seawater is used as cooling medium.

Dehydration Unit – Based on a TSA system

The compressed tail gas is further dried through a bed of desiccant to lower its dew point to below -55° C.

The dryer is based on Temperature Swing Adsorption or TSA unit which consists of two parallel beds of desiccant (one operating and one re-generating). HP steam from the Hydrogen Plant is used to regenerate the bed.

After the dryer, the dried gas is mixed with the compressed vent gas from the 3rd flash column before being fed into the cold box.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 62 of 112

Cold Box

The Cold Box consists of 3 flash columns, 2 brazed heat aluminium heat exchangers (BAHX) and associated JT valves.

The operating pressures and the configuration selected for the cold box are governed by the target purity of the product CO_2 and the specification for the CO_2 recovery rate.

The dried compressed Tail Gas (at 2.8 MPa) is cooled and then fed into the first flash column to separate the partially condensed CO₂ from the gas phase (at -33°C). The liquid CO₂ leaves the bottom of the first flash column and expanded in the JT valve to 1.8 MPa before being warmed up in the first BAHX to around 15°C (The expansion of the liquid CO₂ and the subsequent warming of the CO₂ provides most of the refrigeration to the first BAHX). The vaporised CO₂ is then mixed with the compressed product CO₂ from the 1st stage CO₂ compressor before being fed into the final product CO₂ compressor.

The vent gas from the first flash column (still containing the bulk of the CO₂ at -33°C) is then further cooled and fed into the 2^{nd} flash column to separate the condensed CO₂ (at -54°C). The liquid CO₂ from the 2^{nd} flash column is warmed up in the 2^{nd} BAHX, then expanded in the JT valve to 0.56 MPa before being fed into the 3^{rd} flash column. On the other hand, the vent gas from the 2^{nd} column is warmed up in the two BAHX before being fed into the CO₂ separation membrane.

In the 3^{rd} flash column (at -55°C), the liquid CO₂ leaving the bottom of the column is then vapourised and warmed up in the two BAHX to around 15°C before being fed into the first stage product CO₂ compressor (compressing it to 1.8 MPa).

The vent gas leaving from the top of the 3^{rd} flash column is then warmed up in the 2 BAHX and then re-compressed (from 0.56 MPa to 2.8MPa) before being mixed with the feed gas of the cold box.

It should be noted that the addition of the 3^{rd} column together with the recycling of the CO₂ permeate and the vent gas from the 3^{rd} flash column into the feed gas of the cold box helps in achieving the product CO₂ purity to >99+%.

CO2 Membrane Separation

The vent gas from the 2^{nd} flash column is typically rich in CO₂ (containing around 55-60% mol. at 2.8 MPa). This is fed into the membrane to produce the CO₂ rich permeate and the non-permeate vent gas.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 63 of 112

The CO_2 rich permeate (at nearly atmospheric) is recycled back to the Tail Gas Compressor to enhance the CO_2 recovery rate of the cold box. Whilst the non-permeate (i.e. vent gas) at 2.7MPa is heated by the product CO_2 in the aftercooler of the final CO_2 compressor and HP steam from the Hydrogen Plant before being expanded in the turbo-expander to generate electricity. The expanded vent gas is then sent to the SMR burners as the primary fuel.

Product CO₂ Compressors

The product CO_2 is compressed in two stages. The vaporised CO_2 from the third flash column is compressed from 0.56 to 1.8 MPa in an adiabatic centrifugal compressor. This is then cooled in the aftercooler by the seawater before being mixed with the vaporised from the first flash column. The product CO2 is then further compressed from 1.8 MPa to 11 MPa in the 2nd stage adiabatic compressor. This is then cooled in the aftercooler by the warm vent gas of the 2nd flash column and seawater cooling.

6.4.3. Cogen Plant (Power Island)

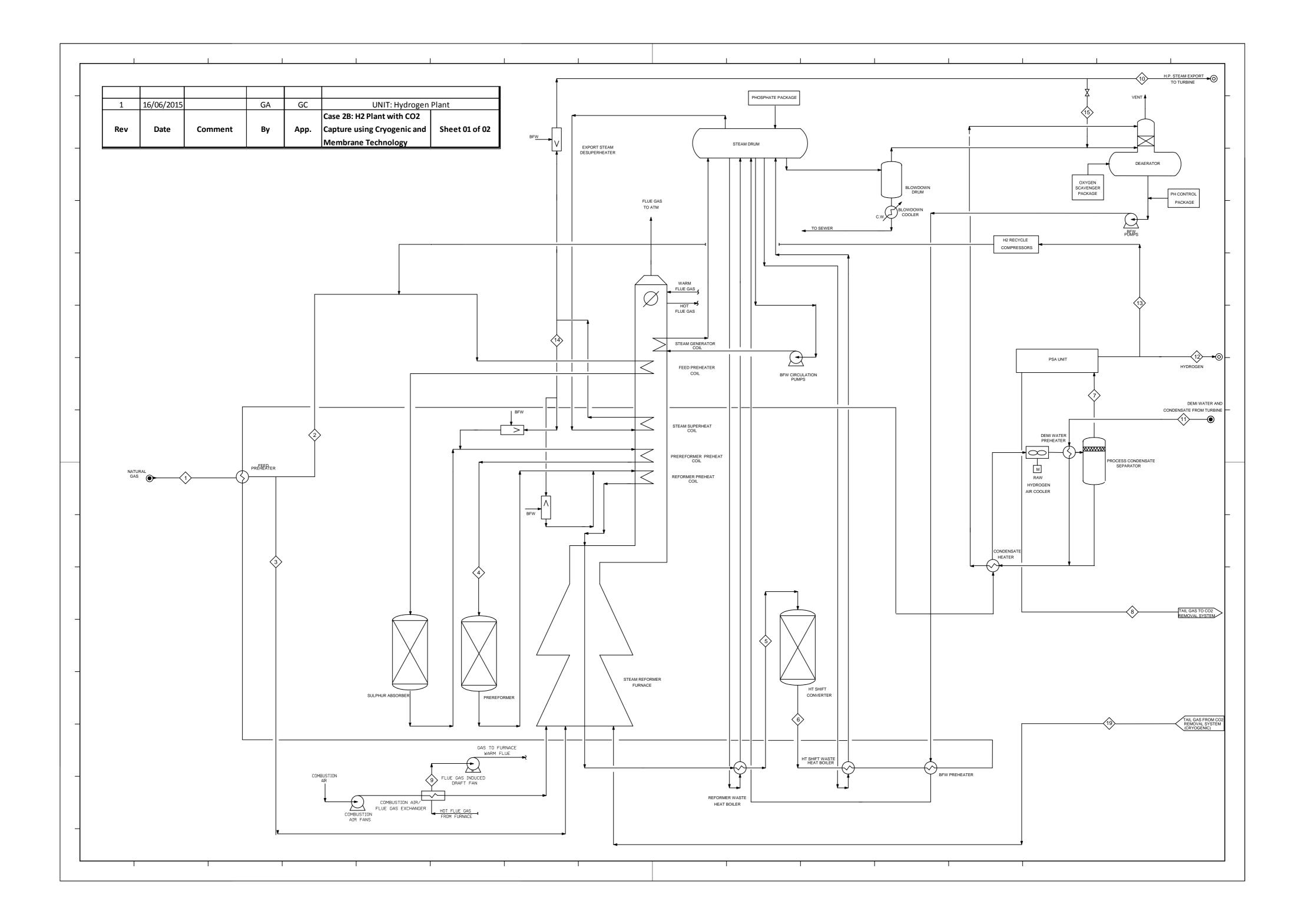
The COGEN Plant for Case 2B is based on a condensing type steam turbine which is described in Section 2.4.2.

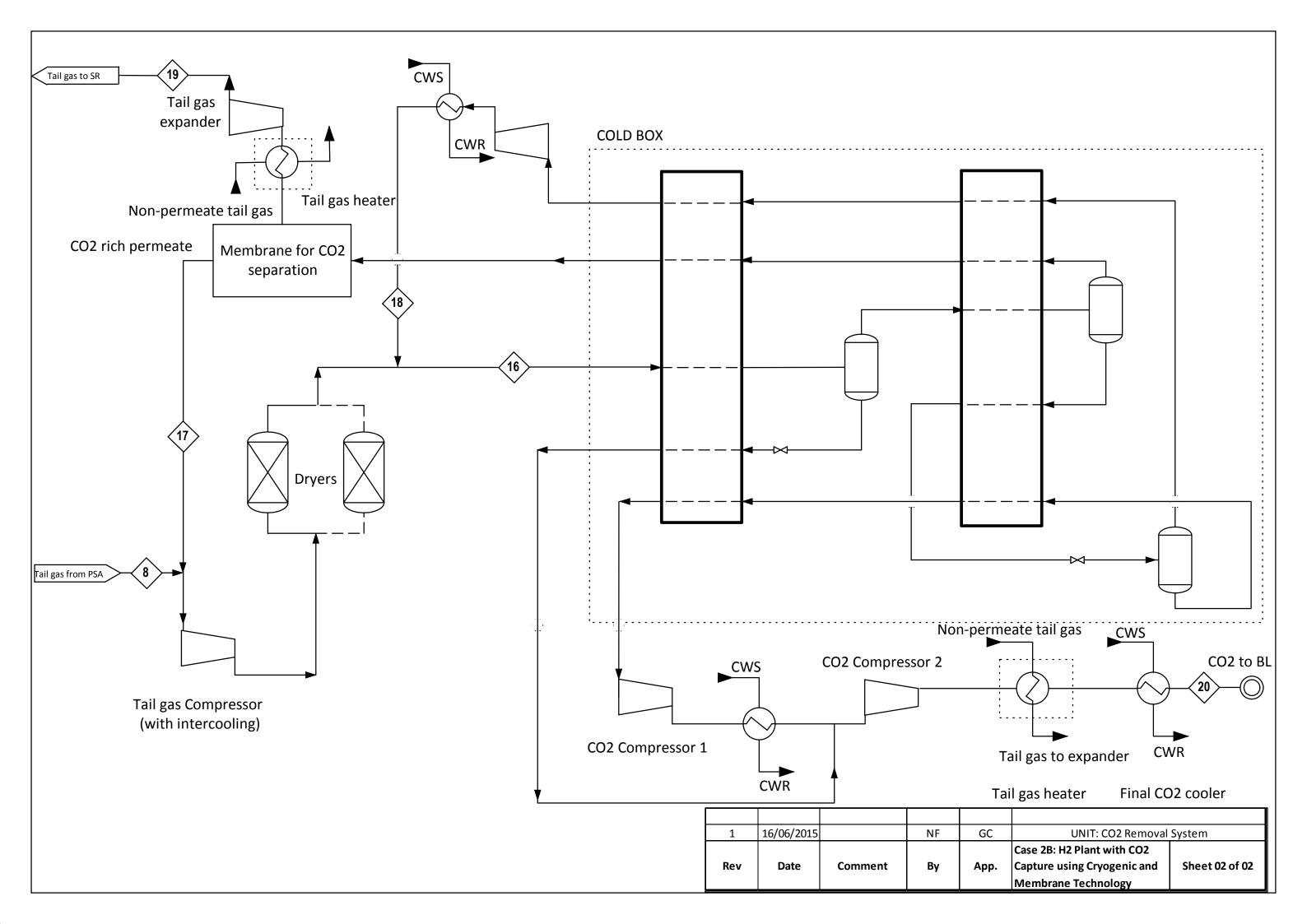
6.4.4. <u>Demi-Water Plant/Cooling Water System</u>

The Demi-Water Plant and Cooling Water System for Case 2B has similar scheme used in Base Case as described in Section 2.4.3.

Additionally, once through seawater cooling is mainly used as cooling medium for the intercoolers of the tail gas compressor, vent gas compressor (from 3^{rd} flash column) and product CO₂ compressors.

6.4.5. Balance of Plant (BoP)


The operation of the whole plant is supported by additional utilities and facilities. These are presented in Section 2.4.4.


IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 64 of 112

6.5. Process Flow Diagram (Hydrogen Plant and CO₂ Capture System)

The PFDs enclosed shows the different processes included in the Hydrogen Plant, the CO₂ Capture Plant (including CO₂ Compression).

The processes involving the Hydrogen Plant are described in Section 2.4. The processes involving the CO_2 capture plant are described in Sections 6.4.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 65 of 112

6.6. Heat and Mass Balance

The heat and mass balances reported in this section makes reference to the Process Flow Diagram presented in Section 6.5.

FOST	FER	₩ ~~ н .	EELEP						HEAT AND MATERIAL BALANCE Case 2B - H2 Plant with CO2 Capture using Cryogenic and M Technology						
CLIENT:		IEA GHG							REV	DATE	BY	СНКД	APP		
PROJECT NAME:		TECHNO-ECONO	MIC EVALUATION	OF H2 PRODUCTIO	N WITH CO2 CAI	PTURE			0	April 2015	GA	CG	CG		
FWI CONTRACT:		1BD0840A							1	June 2015	GA	CG	CG		
LOCATION:		THE NETHERLAN	D												
	1	1	1							1		1			
Stream		1	2	3	4	5	6	7	8	9	10	11	12		
Description		Natural Gas From B.L.	Natural Gas feedstock to Hydrogen Plant	Natural Gas fuel to burners	Purified Feedstock to Pre-reformer	HTS Reactor Inlet	HTS Reactor Outlet	PSA inlet	PSA Tail gas to CO2 removal System	Flue gas to ATM	HP Steam export	Demi Water (make up) and steam turbine condensate	Hydrogen to B.L		
Temperature	°C	9	128	121	500	320	412	35	28	136	395	15	40		
Pressure	MPa	7.00	3.71	0.50	3.39	2.80	2.77	2.58	0.13	0.02	4.23	0.60	2.50		
Molar Flow	kmol/h	1692.4	1455.8	236.7	5514.0	8370.3	8370.3	6596.9	2106.3	7666.7	2561.7	5070.7	4461.5		
Mass Flow	kg/h	30495	26231	4264	98874	101667	101667	69711	60658	214531	46149	91350	8994		
Composition															
CO2	mol/mol	0.0200	0.0200	0.0200	0.0053	0.0492	0.1283	0.1627	0.5095	0.1118	0.0000	0.0000	0.0000		
СО	mol/mol	0.0000	0.0000	0.0000	0.0000	0.1156	0.0366	0.0464	0.1454	(2)	0.0000	0.0000	0.0000		
Hydrogen	mol/mol	0.0000	0.0000	0.0000	0.0053	0.5171	0.5961	0.7563	0.2369	0.0000	0.0000	0.0000	0.9999+		
Nitrogen	mol/mol	0.0089	0.0089	0.0089	0.0023	0.0015	0.0015	0.0000	0.0062	0.6875	0.0000	0.0000	0.0000		
Oxygen	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0134	0.0000	0.0000	0.0000		
Methane	mol/mol	0.8900	0.8900	0.8900	0.2350	0.0238	0.0238	0.0302	0.0945	0.0000	0.0000	0.0000	0.0000		
Ethane	mol/mol	0.0700	0.0700	0.0700	0.0185	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Propane	mol/mol	0.0100	0.0100	0.0100	0.0026	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
n-Butane	mol/mol	0.0010	0.0010	0.0010	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
n-Pentane	mol/mol	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
H2O	mol/mol	0.0000	0.0000	0.0000	0.7307	0.2927	0.2137	0.0024	0.0076	0.1873	1.0000	1.0000	0.0000		
Contaminants:													+		
H2S	ppm v	(1)													
NOx	mg/Nm3									120 max					
Notes:		(1) For feedstock pt	urification section des	ign purposes 5 ppmv	of H2S have been a	assumed in NG to Hydr	ogen Plant								
		(2) 30 mg/Nm3 max				-									

											HEAT AND MATERIAL BALANCE Case 2B - H2 Plant with CO2 Capture using Cryogenic and Memb Technology							
CLIENT:		IEA GHG							REV	DATE	ВҮ	СНКД	APP					
PROJECT NAME:		TECHNO-ECONO	MIC EVALUATION	OF H2 PRODUCTIO	ON WITH CO2 CAP	PTURE			0	April 2015	GA	CG	CG					
WI CONTRACT:		1BD0840A							1	June 2015	GA	CG	CG					
OCATION:		THE NETHERLAN	D						_									
		1	1	1	1	1	I	1	1			1						
Stream		13	14	15	16	17	18	19	20				<u></u>					
Description		H2 Recycle	HP Steam to process	LP Steam To Deareator	Tail gas to cold box	CO2 rich permeate from membrane	Third flash overhead recycle	Tail gas to Steam Reformer	CO2 to pipeline									
emperature	°C	40	400	177	22	9	20	29	30									
Pressure	MPa	2.51	4.29	0.44	2.79	0.13	2.80	0.15	11.00									
Iolar Flow	kmol/h	29.1	4157.2	30.0	2942.0	667.8	184.7	1112.2	978.0									
lass Flow	kg/h	59	74892	540	86640	18876	7421	17415	42948				<u> </u>					
Composition													+					
CO2	mol/mol	0.0000	0.0000	0.0000	0.5294	0.4939	0.8401	0.0887	0.9964									
CO	mol/mol	0.0000	0.0000	0.0000	0.1423	0.1525	0.0577	0.2747	0.0007									
Hydrogen	mol/mol	0.9999+	0.0000	0.0000	0.2264	0.2490	0.0053	0.4486	0.0000									
H2S	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000									
Nitrogen	mol/mol	0.0000	0.0000	0.0000	0.0060	0.0064	0.0027	0.0116	0.0000									
Oxygen	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000									
Methane	mol/mol	0.0000	0.0000	0.0000	0.0958	0.0981	0.0943	0.1763	0.0029									
Ethane	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000									
Propane	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000									
n-Butane	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000									
n-Pentane	mol/mol	0.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000									
H2O	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000									
Contaminants:													+					
l2S	ppm v																	
Юx	mg/Nm3																	
													<u> </u>					
lotes:			1	1	1	1	1	1	11			1	L					

IEAGHG

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

December 2016

Sheet: 66 of 112

6.7. Plant Performance Data

The table below summarizes the energy performance and CO_2 emissions relevant to the Hydrogen Plant with CO_2 Capture from PSA Tail Gas using Cryogenic and Membrane Separation Technology.

Plant Performance Data Case 2B		
INLET STREAMS		
Natural Gas (as Feedstock)	t/h	26.231
Natural Gas (as Fuel)	t/h	4.264
Natural Gas (Total Consumption)	t/h	30.495
Natural Gas LHV	MJ/kg	46.50
Total Energy Input	MW	393.89
OUTLET STREAMS		
Hydrogen Product to BL	t/h	8.994
	Nm³/h	100,000
Hydrogen LHV	MJ/kg	119.96
Total Energy in the Product	MW	299.70
POWER BALANCE		
Gross Power Output from the COGEN Plant	MWe	11.000
Hydrogen Plant Power Consumption	MWe	-1.216
COGEN Plant + Utilities + BoP Consumption	MWe	-0.511
CO2 Capture Plant Consumption	MWe	-10.919
Gross Power Output from Vent Gas Expander	MWe	1.930
CO2 Compression and Dehydration Unit	MWe	(see Note 1)
Excess Power to the Grid	MWe	0.284
SPECIFIC CONSUMPTIONS		
Natural Gas (as Feedstock) GJ/	1000 Nm ³ H ₂	12.197
Natural Gas (as Fuel) GJ/	1000 Nm ³ H ₂	1.983
Feed + Fuel GJ/	1000 Nm ³ H ₂	14.180
SPECIFIC EMISSIONS		
Specific CO2 Emission t/2	L000 Nm ³ H ₂	0.3772
Specific CO2 Captured t/2	1000 Nm ³ H ₂	0.4289
Overall CO2 Capture Rate (Case Specific)		53.28%
Overall CO2 Capture Rate (as Compared to Base Case)		53.38%

*Note 1: power consumption of the CO₂ compression and dehydration are included in the CO₂ capture plant.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 67 of 112

6.8. Preliminary Utilities Consumption

This section presents the different utilities consumption (usage) of the Hydrogen Plant, Power Island, CO₂ Capture Plant, and others.

ESTIMATED UTILITY CONSUMPTIONS

CUSTOMER NAME	: IEAGHG		Case 2B	- H2 Plant	REV.	REV.0	REV. 1	REV. 2					SHEET				
PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF	H2 PRODU	JCTION WIT	TH CO2 CA	PTURE		with CO2	2 Capture	BY	GA							1
FWI CONTRACT:	1BD0840 A						using Crv	ogenic and	CHKD	GC							OF
LOCATION:	THE NETHERLAND							brane	DATE	April 2015							1
		ELECTRIC	C POWER		STEAM t/h		EFFLUENT	LOSSES	DMW	RAW WATER	COOLING	G WATER	SEA V	VATER	FUEL	INSTR. AIR	Nitrogen
		LOAD BHP	kW	LP	MP	HP	t/h	t/h	t/h	t/h	∆T (°C)	m³/hr	∆T (°C)	m³/hr	MMKcal/h	Nm³/h	Nm³/h
ŀ	HYDROGEN PLANT		1,216	0.54	0.00	40.4	-1.14	-44.2 (2)	91.5 (1)	0.00	11	9.70			48.2	100	(250)
						-46.1											
	CO2 CAPTURE		10,919 -1,930			1.3			-1.3		11	139.0	7	1650			
	POWER ISLAND 19					44.9			44.0				7	3195			
			-11,000						-44.9								
	UTILITIES / BoP		492				-13.6		-45.4	59.0	11	-148.7	7	-234	0.5	100 -200	(250) (-500)
									-43.4							-200	(-300)
	TOTAL		-284	1	0	0	-14.8	-44.2	0	59.0	-	0	-	4,611	48.7	0	0
							(2) Losses	includes wa	ater consum	condensate ed in the rea WT) include	action and d	eaerator ve		n blowdow	n in the hydro	ogen plant	

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 68 of 112

6.9. Preliminary Equipment List and Size of Main Components/Packages

This section presents the preliminary list of equipment and main components/packages relevant to the Power Island, CO₂ Capture Plant, and BoP of Case 2B.

For the equipment list and size of main components relevant to the Hydrogen Plant should be referred to Section 2.9.

		PRE			ST	REVISION	DATE	BY	СНКД	APP	SHEET
FOS	TER 🕅 VV HEELER	CLIENT:	IEA GHG			0	April 2015	NF	CG	CG	1
		PROJECT NAME:	TECHNO-ECONOMI	C EVALUATION OF H 2	PRODUCTION						OF
		PROJECT NAME:	WITH CO2 CAPTUR	E							OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								1
		CASE	CASE 2B - H2 PLAN CRYOGENIC AND M	T WITH CO2 CAPTURE IEMBRANE TECHNOLO	USING DGY						2
		UNIT	CO2 REMOVAL SYS	TEM							1 !
		•					•			•	
			FLOW	PRESSURE	DESIGN	Brake Power	MATERIAL				
ITEM No.	DESCRIPTION	TYPE	FLOW	INLET/OUTLET	PRESSURE	Brake Power	MATERIAL		REMARKS		REV.
			Nm³/h	MPa	MPa	kW	CASING/IMPELLER				
COMPRESSORS											
	TAIL GAS COMPRESSOR	CENTRIFUGAL	65,000					Brake Power: 8,650 kW Five stages centrifugal Electrical driven Pine 0.1 MPa, Pout= 2 Including: 5 condensate separator 4 intercoolers + 1 afterco	compressor .9 MPa, rs		
	OVERHEAD FLASH RECYCLE COMPRESSOR	CENTRIFUGAL						Brake Power: 250 kW Three stages centrifuga Electrical driven Pin= 0.54 MPa, Pout= Including: 1 intercooler + 1 afterco	2.8 MPa,		
	CO2 COMPRESSORS	CENTRIFUGAL	22,000					Brake Power: 2,500 kW Three stages centrifuga Electrical driven Pin= 0.54 MPa, Pout= Including: 2 intercoolers + 2 afterc	al compressor	heater + final cooler)	
EXPANDER											
	NON PERMEATE GAS EXPANDER		25,000					Generator design: 2 MV	Ve		
											1
											<u> </u>
											<u> </u>
FWI -110/45	1	1	1	BASE: EQLIST0_00.XLT	1	1	1	L	PRINTED ON:		24/06/2015

(PRE	ELIMINARY E	QUIPMENT LIS	бТ	REVISION	DATE	BY	СНКД	APP	SHEET
(FOS	TER WWHEELER	CLIENT:	IEA GHG			0	April 2015	NF	CG	CG	2
I		PROJECT NAME:	TECHNO-ECONOMI CO2 CAPTURE	C EVALUATION OF H 2	PRODUCTION WITH						OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								
		CASE	CASE 2B - H2 PLAN AND MEMBRANE TE	T WITH CO2 CAPTURE CHNOLOGY	USING CRYOGENIC						2
		UNIT	CO2 REMOVAL SYS	TEM							
			FLOW	PRESSURE	DESIGN	Brake Power	MATERIAL				
ITEM No.	DESCRIPTION	TYPE		INLET/OUTLET	PRESSURE			REMARKS			REV.
			Nm³/h	МРа	MPa	kW	CASING/IMPELLER				
MISCELLANEA											
	DESSICANT PACKAGE	TSA	68,750	2.9				Oulets	stream dew point= -55°C	@29 bar	
											-
	COLD BOX PACKAGE		Feed flowrate: 66,000 Nm3/h					Including: - multi-stream plate-fir - three (3) flash separ	n aluminium heat exchang ators	ger	
	CO2 MEMBRANE		Feed flowrate: 40,000 Nm3/h								
											_
											<u> </u>
											<u> </u>
											+
											<u> </u>
											+
											+
											+
FWI -110/45				BASE: EQLIST0_00.XLT					PRINTED ON:		24/06/2015

	PR	ELIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
(FOSTER WHEELER)	CLIENT:	IEA GHG	0	April 2015	NF	CG	CG	1
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	CASE 2B - H2 PLANT WITH CO2 CAPTURE USING CRYOGENIC AND MEMBRANE TECHNOLOGY						1
	UNIT	POWER ISLAND						

			SIZE	PRESSURE	DESIGN	DESIGN			
ITEM No.	DESCRIPTION	TYPE	UILL	INLET/OUTLET	PRESSURE	TEMPERATURE	MATERIAL	REMARKS	REV.
			-	MPa	MPa	°C			
OWER ISLAND									
	STEAM TURBINE AND GENERATOR PACKAGE								
	Including								
	STEAM TURBINE	Condensing type	12 MWe					Including: lube oil system;	
								Cooling system; Hydraulic control system; Seal system	
								Drainage system Gland condenser	
	STEAM TURBINE GENERATOR		15 MVA					Including relevant auxiliaries	
	STEAM TURBINE BYPASS SYSTEM								
	STEAM CONDENSER PACKAGE		24 x 10 ⁶ kcal/h	Condensing pressure: 8 kPa				Including: Condenser hotwell	
								Ejector Start-up Ejector	
	CONDENSATE PUMP	Centrifugal	60 m3/h x 80 m 22 kW					One operating one spare	-
									-
									-

(III)	PRELIMINARY EQUIPMENT LIST		REVISION	DATE	BY	CHKD	APP	SHEET
FOSTER WHEELER	CLIENT:	CLIENT: IEA GHG		April 2015	NF	CG	CG	1
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_2$ PRODUCTION WITH CO2 CAPTURE						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						1
	CASE	CASE 2B - H2 PLANT WITH CO2 CAPTURE USING CRYOGENIC AND MEMBRANE TECHNOLOGY						3
	UNIT	UTILITIES AND BOP						1

ITEM No.	DESCRIPTION		SIZE	PRESSURE INLET/OUTLET MPa	DESIGN PRESSURE MPa	DESIGN TEMPERATURE °C	MATERIAL		551
		TYPE						REMARKS	REV.
								<u> </u>	
COOLING WATER	SYSTEM								
	SEA WATER PUMPS	Centrifugal	4850 m3/h x 25 m 475 kWe					One operating one spare	
	SEA WATER / CLOSED COOLING WATER EXCHANGER		1.4 MWth						
	CLOSED COOLING WATER PUMPS							One operating one spare	
	CLOSED COOLING WATER CIRCUIT EXPANSION DRUM								
	CORROSION INHIBITOR PACKAGE								
INSTRUMENT / PL	LANT AIR SYSTEM								
	AIR COMPRESSOR PACKAGE							including: - Air Compressor - Inter/after coolers	
								- KO Drums (including final KO drum)	
								including:	
	AIR DRYING PACKAGE	Adsorption bed	200 Nm3/h					- Adsorbent Bed (with automatic regenaration system)	
								- Regeneration Electrical Heater - Pre Filters - After Filters	
	IA RECEIVER DRUM	vertical							
		vorticea							

	PRE	ELIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER	CLIENT:	IEA GHG	0	April 2015	NF	CG	CG	2
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	CASE 2B - H2 PLANT WITH CO2 CAPTURE USING CRYOGENIC AND MEMBRANE TECHNOLOGY						3
	UNIT	UTILITIES AND BOP						

ITEM No.	DESCRIPTION		SIZE	PRESSURE	DESIGN PRESSURE	DESIGN TEMPERATURE °C	MATERIAL	REMARKS	
		TYPE		INLET/OUTLET					REV.
			-	MPa	MPa				
RAW / DEMI WAT	ER SYSTEM								
	RAW WATER TANK	Fixed roof						12 h storage	
	RAW WATER FILTRATION PACKAGE		65 m3/h						
	POTABLE WATER TANK	Fixed roof						12 h storage	
	POTABLE WATER PACKAGE								
	DEMI WATER PLANT FEED PUMPS		65 m3/h x 25 m 7.5 kW					One operating, one spare	
	DEMI WATER PACKAGE UNIT		50 m3/h DW production					Including: - Multimedia filter	
								Reverse Osmosis (RO) Cartidge filter Electro de-ionization system	
	DEMIWATER PUMPS		50 m3/h x 50 m 15 kW					One operating, one spare	
	DEMIWATER TANK	Fixed roof						12 h storage	

Γ		PRELIMINARY EQUI			DATE	BY	СНКД	APP	SHEET
	(FOSTER WHEELER)	CLIENT:	IEA GHG	0	April 2015	NF	CG	CG	3
		PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H 2 PRODUCTION WITH CO2 CAPTURE						OF
		FWI CONTRACT:	1BD0840A						
		LOCATION	THE NETHERLAND						1
		CASE	CASE 2B - H2 PLANT WITH CO2 CAPTURE USING CRYOGENIC AND MEMBRANE TECHNOLOGY						3
_		UNIT	UTILITIES AND BOP]

			SIZE	PRESSURE	DESIGN	DESIGN			
ITEM No.	DESCRIPTION	TYPE	SIZE	INLET/OUTLET	PRESSURE	TEMPERATURE	MATERIAL	REMARKS	RE
			-	MPa	MPa	°C			
NITROGEN GENE	RATION PACKAGE								
	NITROGEN PRODUCTION PACKAGE		500 Nm3/h					Including: - Intake Air Filter	
								- Air Compressor - Air Receiver	
								- Inter/after coolers - KO Drums	-
								Molecular Sieve Water Absorber (Air Dryer) Chiller Unit	
								One Expansion Turbine One Cryogenic Distillation Column One Main Heat Exchanger	
								- One Main Heat Exchanger	
								Including:	
	LIQUID NITROGEN STORAGE AND VAPORISATION PACKAGE		500 Nm3/h					- Liquid Nitrogen Storage tank - Nitrogen Vaporizer (Air Fin Type)	
								- Nitrogen heater (electrical)	
	GASEOUS NITROGEN BUFFER VESSEL								
FLARE SYSTEM									
	FLARE KO DRUM	Horizontal							
	FLARE PACKAGE		Max relief flowrate 102,000 kg/h; MW:12					Including riser; tip, seal drum	
	FLARE KO DRUM PUMPS	Centrifugal						One operating one spare	
BoP									
	INTERCONNECTING								
	BUILDING (CONTROL ROOM, ELECTRICAL SUBSTATION, LAB)								
	DRAIN SYSTEM								
	FIRE FIGHTING								
	ELECTRICAL SYSTEM							Up to generator terminals	1
									1

Revision No.:	FINAL
Date:	December 2016
	Sheet: 69 of 112

7. Case 3

7.1. Basis of Design

This section should be referred to Annex I - Reference Document (Task 2) - for the general plant design criteria and assumptions used in the development of Case 3 (Hydrogen Plant with CO₂ Capture from the Flue Gas of the SMR using MEA).

IEAGHG

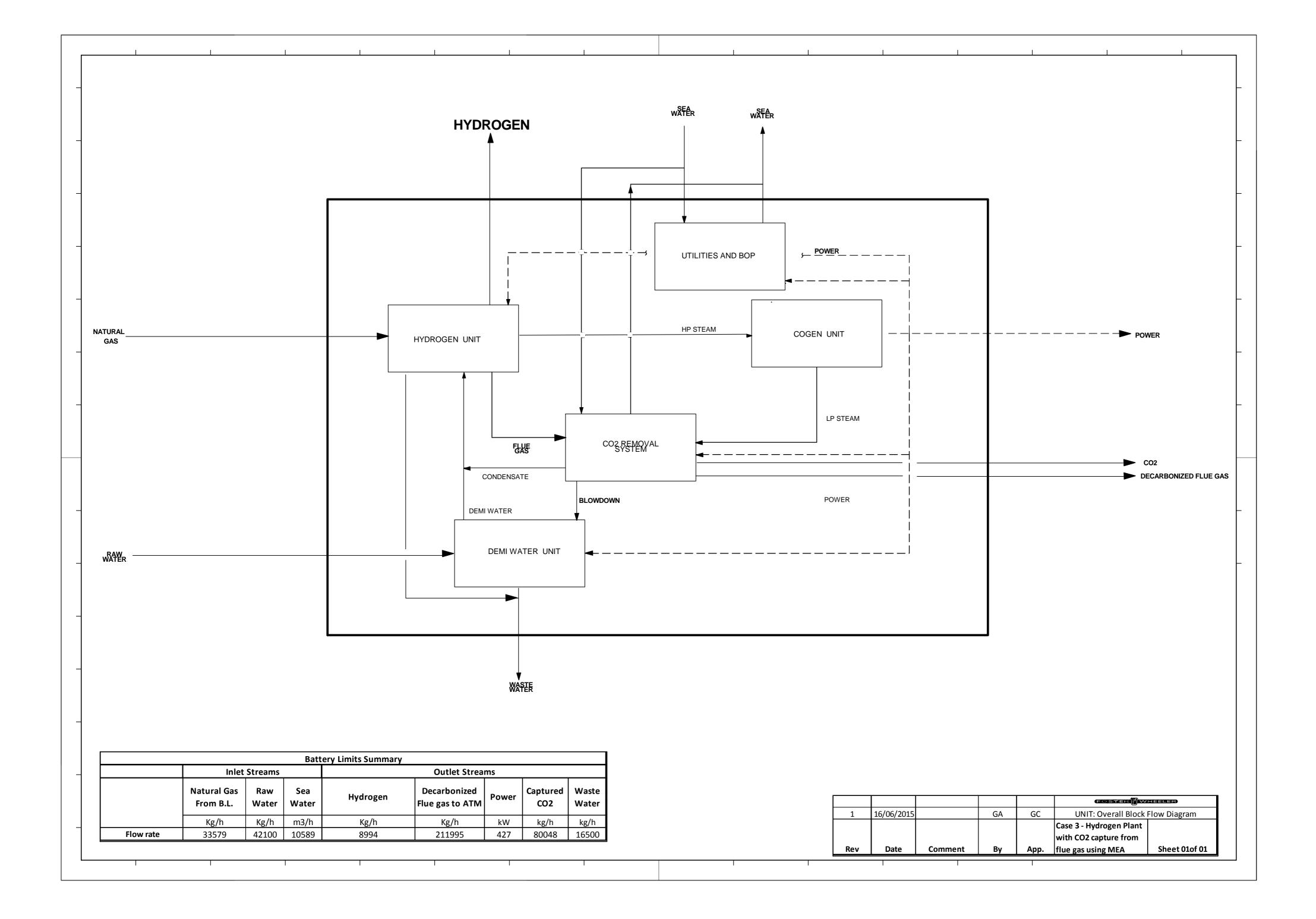
Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

Sheet: 70 of 112

December 2016

7.2. Units Arrangement


The units included in Case 3 (Hydrogen Plant with CO_2 Capture from the SMR Flue Gas using MEA) are as follows:

- Hydrogen Plant
- Cogen Plant (Power Island)
- CO₂ Capture System (Capture from the SMR's Flue Gas using MEA)
- CO₂ Compression and Dehydration
- Demi-Water Plant
- Utilities and Balance of Plant (BoP), consisting of:
 - Cooling Water System
 - Instrument/Plant Air System
 - Nitrogen Generation Package
 - Flare System
 - Interconnecting
 - Drain System
 - Buildings (Control Room, Laboratories, Electrical Sub-Station).

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 71 of 112

7.3. Overall Block Flow Diagram

The BFD presented in the next page shows the different unit processes and the relevant inlet/outlet streams included in Case 3 (Hydrogen Plant with CO₂ Capture from SMR's flue gas using MEA).

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 72 of 112

7.4. Process Description

This section presents the description of the key processes included in the Hydrogen Plant with CO₂ Capture from the SMR's Flue Gas using MEA (Case 3).

7.4.1. <u>Hydrogen Plant</u>

This section makes reference to the Process Flow Diagram presented in Sheet 1 of Section 7.5.

The Hydrogen Plant used in Case 3 is analogous to the Hydrogen Plant reported in the Base Case. For the process description relevant to the hydrogen production is presented in Section 2.4.1.

There are a couple of differences between the Hydrogen Plant of Case 3 and the Hydrogen Plant reported in Base Case. These include:

- Higher Natural Gas consumption (an increase of 9.9% wt. as compared to the Base Case) due to the additional supplementary fuel needed to produce the steam required by the CO₂ capture plant.
- The SMR's flue gas after pre-heating of the combustion air is sent to the battery limit of the CO₂ capture plant to pre-heat the out-going vent gas from the CO₂ absorber.
- The convective section of the steam reformer includes a steam generation coil and a steam superheater coil with larger duty as compared to the Base Case and an additional BFW pre-heating coil (this has similar configuration to the Hydrogen Plant reported in Case 1A). This is to provide the additional steam generation capacity required to meet the additional steam demand used in the solvent regeneration of the CO₂ capture plant.

7.4.2. <u>CO2 Capture Plant (MEA based Chemical Absorption Technology)</u>

This section makes reference to the Process Flow Diagram presented in Sheet 2 of Section 7.5.

The CO₂ Capture Plant is based on chemical absorption technology using MEA as solvent with a variant of a split flow configuration employed.

The capture plant mainly consist of gas-gas heater, quench scrubber, absorber and water wash column (with associated inter-coolers), lean/rich amine heat exchangers, flash drum, stripper column (with associated condenser and reboiler), various trim coolers, filters and pumps.

The SMR's flue gas coming from the Combustion Air/Flue Gas Heat Exchanger, at a temperature of about 135°C, is cooled in the gas-gas heater by the vent gas (or de-carbonised

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 73 of 112

flue gas coming from the absorber column). The vent gas is then discharged to the atmosphere in the stack at about 90° C.

The cooled flue gas is then fed into a quench scrubber/direct contact cooler for further cooling and desulphurisation by washing with a solution of caustic soda or sodium bicarbonate. This reduces the SOx in the flue gas to below 1 ppm level (in order to minimise any degradation of the solvent).

The majority of the sour water collected from the bottom of the direct contact cooler is cooled and recirculated to the top of the scrubber. A bleed is taken and sent to the Waste Water Treatment Unit of the Raw Water System.

The cooled flue gas is blown into the Absorber Column where the CO_2 is absorbed by contacting with a semi-lean MEA solution in the first packed bed and then by the lean (fully generated) MEA solution in the second pack bed.

The treated flue gas is then washed in the water wash column before being sent to the gas-gas heater (i.e. to minimise the carryover of amine and degraded products). The water used in the water wash column is cooled by the pump-around coolers which helps remove the heat of reaction during the CO₂ absorption with MEA.

The rich amine is pumped from the bottom of the Absorber Column and is split into two streams. The first stream is heated in the Cross Heat Exchanger by the hot lean amine coming from the Stripper's Bottom (Reboiler) and this is fed into the top of Stripper Column. The second stream is initially heated by the semi-lean amine (coming from the bottom of the Flash Column) in the Semi-Lean Solvent Cooler and further heated by the lean amine in the Flash Pre-heater before being fed into the Flash Column where this produces a vapour or gas phase which is sent to the stripper column, and the liquid phase which constitutes the semi-lean amine.

The lean amine coming from the Flash Pre-heater is further cooled in the Lean Solvent Cooler before being introduced into the top of the Absorber Column. On the other hand, the semi-lean amine from the Semi-Lean Solvent Cooler is introduced in the middle of the Absorber Column.

The heated rich MEA solvent is regenerated in the stripping column, which consists of a stripping and rectification section. The column traffic in the lower section is mainly driven by the vertical thermosiphon reboilers situated at the bottom of the stripping column. The reboilers are heated by the LP steam coming from the Back Pressure Steam Turbine of the Cogen Plant. The condensate recovered from the reboiler is sent back to the Hydrogen Plant's BFW system.

The overhead vapour from the Stripper Column is then sent to the Stripper's Condenser where the steam in the overhead gas are condensed, collected and returned as a reflux to the Stripper Column and with some excess condensate pumped to storage.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 74 of 112

The CO_2 rich gas from the Stripper's Condenser is then sent to the CO_2 compression and dehydration unit.

Additionally, a portion of the lean amine is periodically withdrawn and sent to the Reclaimer to remove the heat stable salts (which are formed from the reaction of the MEA with the impurities present in the flue gas).

The Reclaimer is a kettle type heat exchanger similar to the reboiler. The operation of the Reclaimer is a batch process. Normally, a small amount of caustic soda is initially injected as a neutralising agent to precipitate the heat stable salts. The vapour gathered from the Reclaimer is sent back to the bottom of the column. The remaining heavy residue collected after the reclaiming process is pumped away for disposal. Occasionally, fresh MEA from the amine storage tank is added to maintain the liquid level in the Reclaimer. The LP steam coming from the Back Pressure Steam Turbine is also used to re-boil the lean amine. The condensate collected are sent back to the Hydrogen Plant's Deaerator.

7.4.3. <u>CO2 Compression and Dehydration</u>

This section makes reference to the Process Flow Diagram presented in Sheet 3 of Section 7.5.

The CO₂ Compression and Dehydration unit includes the Compressor, Knock-out Drums, Inter-Stage Coolers, Dehydration Unit and Liquid CO₂ pump.

The overhead gas (mainly CO_2) leaving the Stripper's Condenser is compressed to a pressure of 8 MPa by a single train eight-stage centrifugal compressor. The CO_2 compressor is an integrally geared and electrically driven machine which is equipped with anti-surge control, vent, inter-stage coolers and knock-out drums in between stages and condensate draining facilities as required.

There is one Inter-stage Coolers installed after each compression stage. Seawater is used as cooling medium. The condensed water in the inter-cooler is separated from the gas in the knock-out drum (this is installed after each inter-coolers up to the fifth stage). The gas leaving the sixth inter-stage cooler is then fed into the dehydration unit.

The dehydration unit is based on a molecular sieve / activated alumina adsorbent dryer. The dryer is designed to operate and produce CO_2 product with a dew point temperature of -40°C. The dryer consists of two bed of adsorbents for every train of compressor. During normal operation, one bed is operational and the other bed (saturated with water) is regenerated. The bed are regenerated by the dry product gas (ca. 10% taken from the dried product gas after the dryer). The regeneration gas (now saturated with water) is recycled back after the third stage compression.

IEAGHG

Revision No.:FINALDate:December 2016

Sheet: 75 of 112

The final two compression stages downstream of the dehydration unit increases the CO_2 pressure to 8 MPa. After the being cooled, the dried compressed CO_2 in dense phase is finally pumped and delivered the to the battery limits of the plant at pipeline pressure of 11 MPa.

7.4.4. Cogen Plant (Power Island)

The Cogen Plant used in Case 3 has a similar scheme reported in Case 1A as described in Section 3.4.4.

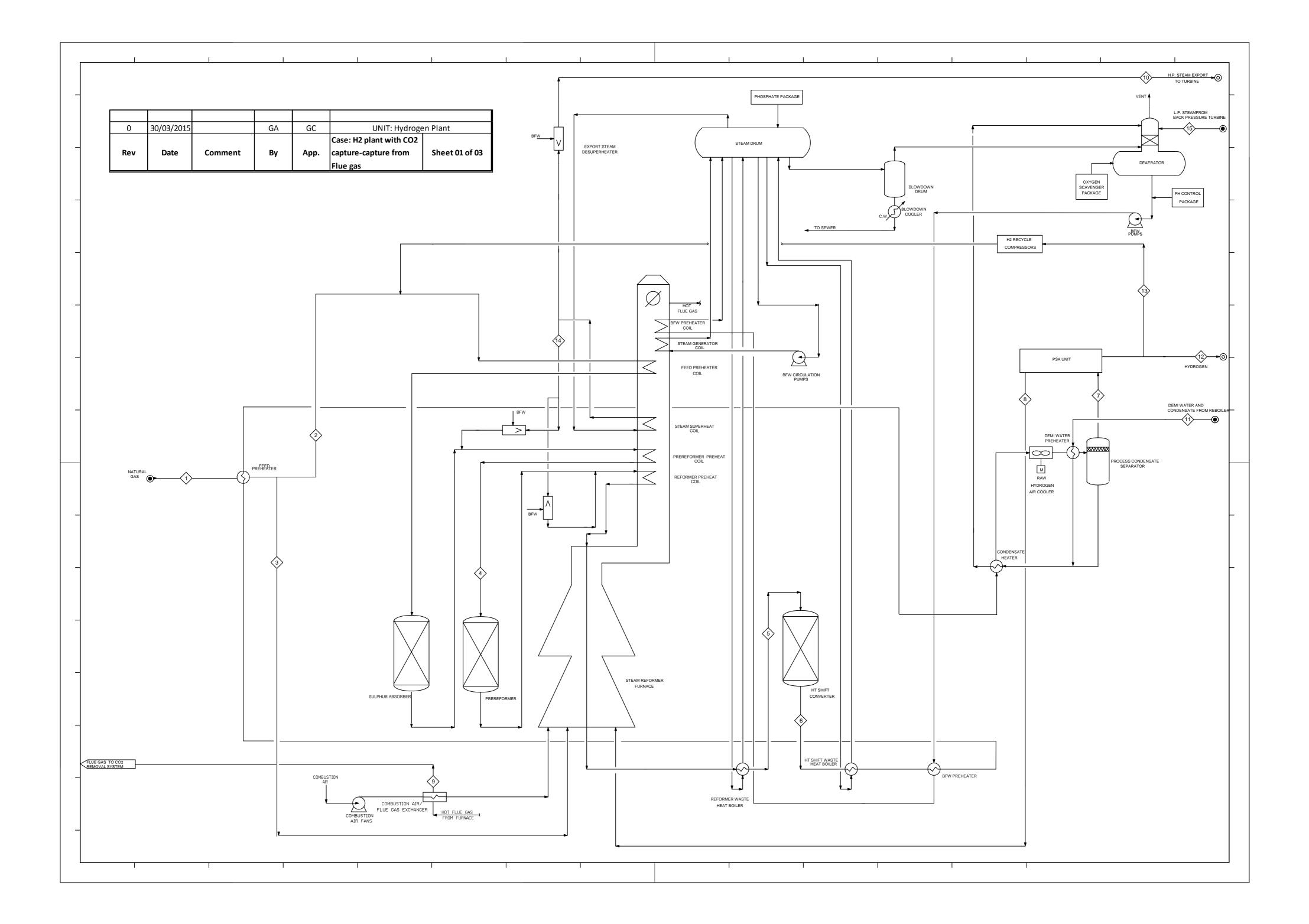
The LP steam from the Back Pressure Steam Turbine is sent to the Stripper's Reboiler and Reclaimer with a small part being fed to the deaerator (as supplementary steam for stripping).

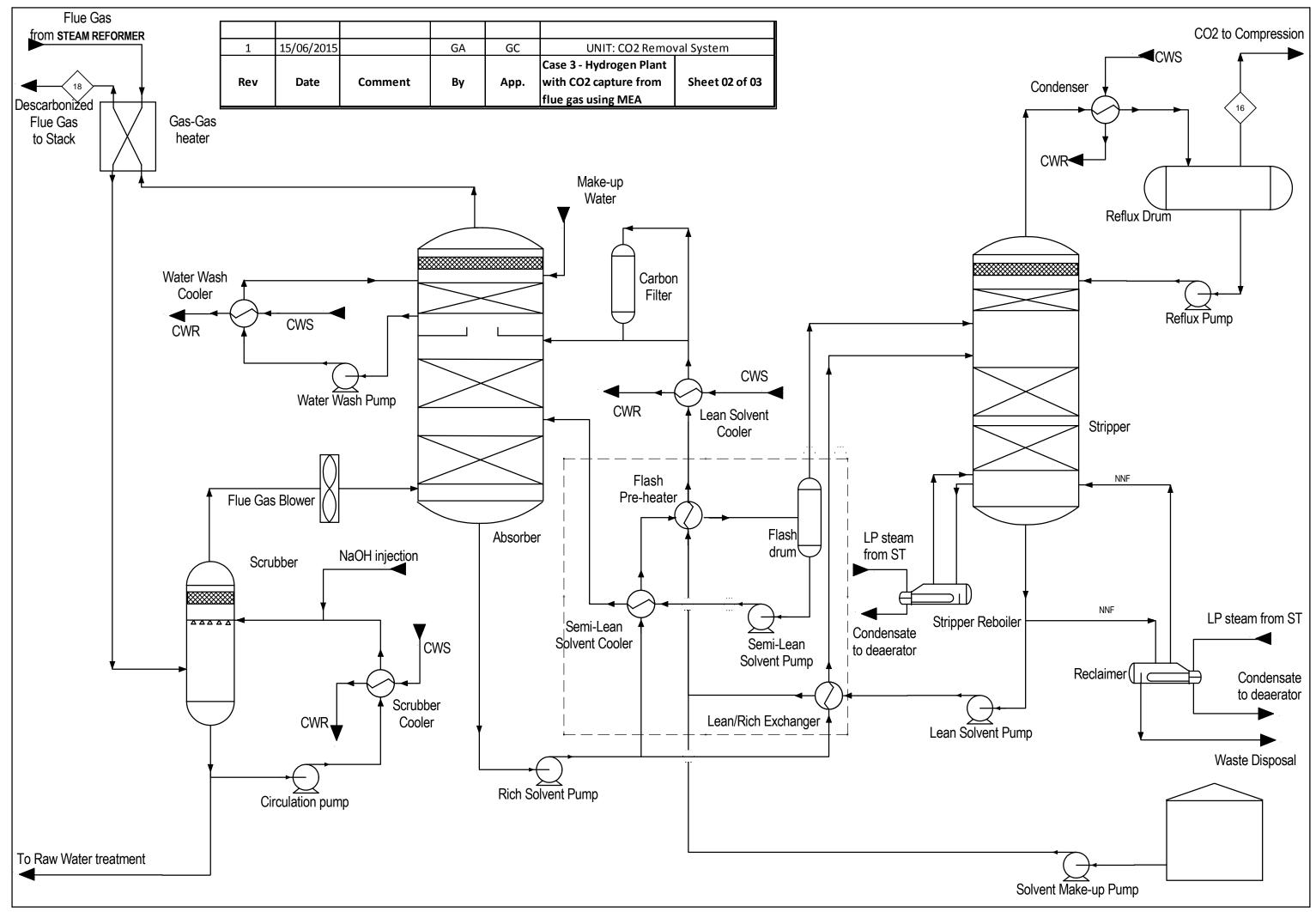
7.4.5. <u>Demi-Water Plant/Cooling Water System</u>

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant

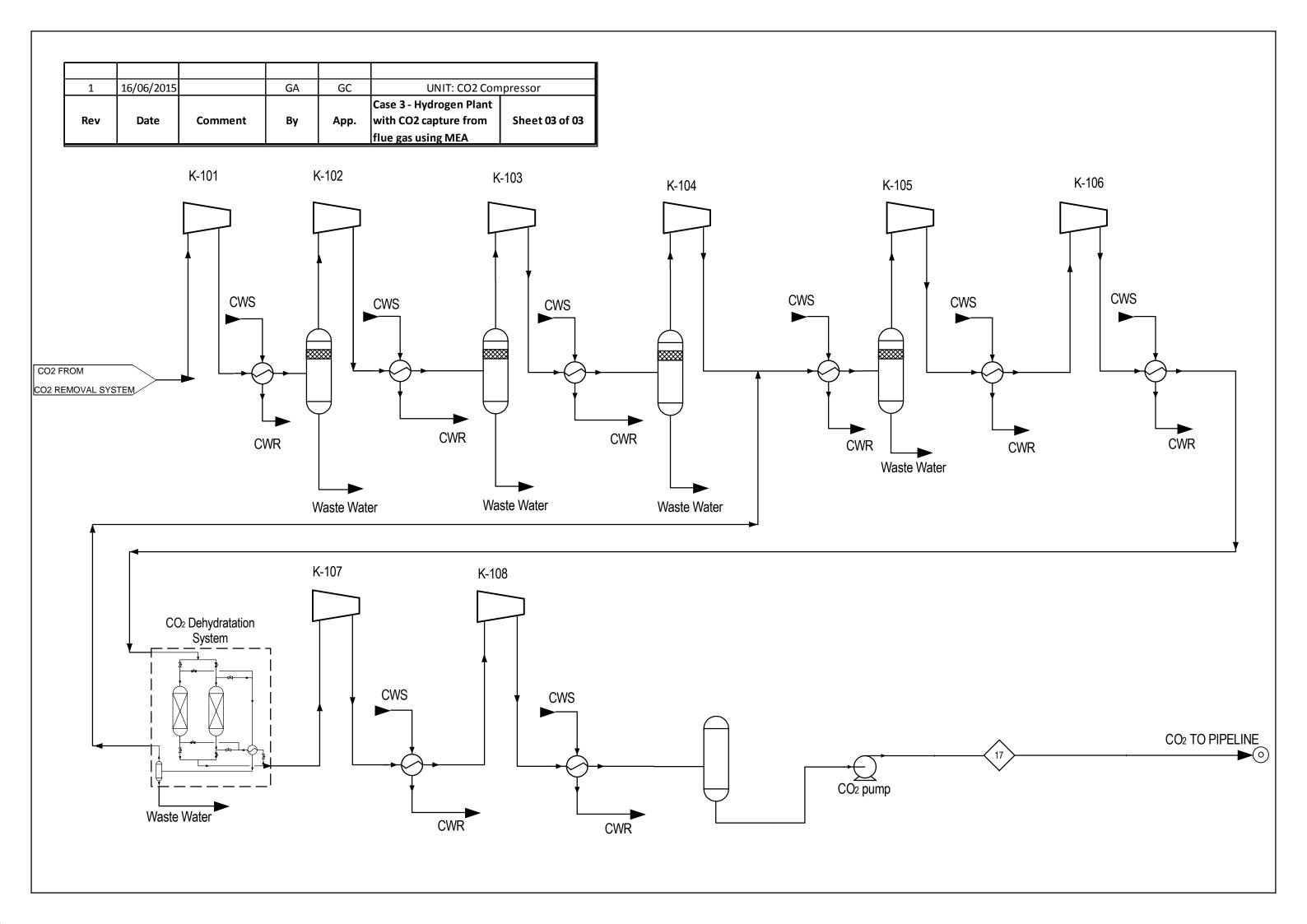
The Demi-Water Plant and Cooling Water System for Case 3 has similar scheme used in Case 1A as described in Section 3.4.5.

7.4.6. <u>Balance of Plant (BoP)</u>


The operation of the whole plant is supported by additional utilities and facilities. These are presented in Section 2.4.4.


Revision No.:	FINAL
Date:	December 2016
	Sheet: 76 of 112
	Revision No.: Date:

7.5. Process Flow Diagram (Hydrogen Plant and CO₂ Capture System)


The PFDs enclosed shows the different processes included in the Hydrogen Plant, the CO₂ Capture Plant and the CO₂ Compression and Dehydration Unit.

The processes involving the Hydrogen Plant are described in Section 2.4. The processes involving the CO_2 capture plant and the CO_2 Compression and Dehydration Unit are described in Section 7.4.

The BFD above is a simplified representation of a Post combustion CO2 removal system. Equipment shown within the dotted line and relevant configuration may change depending on Licensor Technology

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 77 of 112

7.6. Heat and Mass Balance

The heat and mass balances reported in this section makes reference to the Process Flow Diagram presented in Section 7.5.

CLIENT:		IFA GHG							REV	DATE	ВҮ	СНКД	APP
LIENT: IEA GHG ROJECT NAME: TECHNO-ECONOMIC EVALUATION OF H2 PRODUCTION WITH CO2 CAPTURE								0	April 2015	GA	GC	GC	
						FIORE							
FWI CONTRACT:		1BD0840A							1	June 2015	GA	GC	GC
LOCATION:		THE NETHERLAN	D										
Stream		1	2	3	4	5	6	7	8	9	10	11	12
Description		Natural Gas From B.L.	Natural Gas feedstock to Hydrogen Plant	Natural Gas fuel to burners	Purified Feedstock to Pre-reformer	HTS Reactor Inlet	HTS Reactor Outlet	PSA inlet	PSA Tail gas	Flue gas to CO2 removal System	HP Steam export	Demi Water (make up) and condensate stripper reboiler	Hydrogen to B
Temperature	°C	9	120	112	500	320	412	35	28	136	395	15	40
Pressure	MPa	7.00	3.71	0.50	3.39	2.80	2.77	2.58	0.13	0.02	4.23	0.60	2.50
Molar Flow	kmol/h	1863.5	1455.8	407.8	5514.0	8370.3	8370.3	6596.9	2106.3	10651.1	5410.7	7960.0	4461.5
Mass Flow	kg/h	33579	26231	7348	98874	101667	101667	69711	60658	312928	97475	143400	8994
Composition													
CO2	mol/mol	0.0200	0.0200	0.0200	0.0053	0.0492	0.1283	0.1627	0.5095	0.1897	0.0000	0.0000	0.0000
CO	mol/mol	0.0000	0.0000	0.0000	0.0000	0.1156	0.0366	0.0464	0.1454	0.0000	0.0000	0.0000	0.0000
Hydrogen	mol/mol	0.0000	0.0000	0.0000	0.0053	0.5171	0.5961	0.7563	0.2369	0.0000	0.0000	0.0000	0.9999+
Nitrogen	mol/mol	0.0089	0.0089	0.0089	0.0023	0.0015	0.0015	0.0020	0.0062	0.6282	0.0000	0.0000	0.0000
Oxygen	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0109	0.0000	0.0000	0.0000
Methane	mol/mol	0.8900	0.8900	0.8900	0.2350	0.0238	0.0238	0.0302	0.0945	0.0000	0.0000	0.0000	0.0000
Ethane	mol/mol	0.0700	0.0700	0.0700	0.0185	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Propane	mol/mol	0.0100	0.0100	0.0100	0.0026	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
n-Butane	mol/mol	0.0010	0.0010	0.0010	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
n-Pentane	mol/mol	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H2O	mol/mol	0.0000	0.0000	0.0000	0.7307	0.2927	0.2137	0.0024	0.0076	0.1712	1.0000	1.0000	0.0000
Contaminants:													
H2S	ppm v	(1)											
NOx	mg/Nm3												
Notes:													

FOSI									th CO2 capture from flue gas using MEA				
CLIENT: IEA GHG									REV	DATE	ВҮ	СНКД	APP
PROJECT NAME:		TECHNO-ECONO	MIC EVALUATION	OF H2 PRODUCTI	ON WITH CO2 CAP	TURE			0	April 2015	GA	GC	GC
WI CONTRACT:		1BD0840A							1	June 2015	GA	GC	GC
									1	June 2015	<u>U</u> A		
OCATION:		THE NETHERLAN											<u> </u>
Stream		13	14	15	16	17	18						
Description		H2 Recycle	HP Steam to process	LP Steam To Deareator	CO2 from capture unit to Compressor	CO2 to Pipeline	Decarbonized Flue gas to Stack						
emperature	°C	40	400	177	43	24	43						
ressure	MPa	2.51	4.29	0.44	0.16	11.00	0.10						
Molar Flow	kmol/h	29.1	4157.2	38.9	1925.8	1818.9	7672.6						
Mass Flow	kg/h	59	74892	700	81998	80048	211995						
Composition													
CO2	mol/mol	0.0000	0.0000	0.0000	0.9450	0.9999+	0.0263						
CO	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	(1)						
Hydrogen	mol/mol	0.9999+	0.0000	0.0000	0.0000	0.0000	0.0000						
Nitrogen	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.8721						
Oxygen	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0151						
Methane	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Ethane	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Propane	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
n-Butane	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
n-Pentane	mol/mol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
H2O	mol/mol	0.0000	1.0000	1.0000	0.0550	0.0000	0.0865						
Contaminants:													
H2S	ppm v												
Юx	mg/Nm3						120 max						
							-						
Notes:		(1) 30 mg/Nm3 max	l x	<u> </u>	<u> </u>		<u> </u>					<u> </u>	<u> </u>

IEAGHG

Revision No.: FINAL

 $Techno-Economic \ Evaluation \ of \ Standalone \ (Merchant) \ H_2 \ Plant \qquad Date:$

December 2016

Sheet: 78 of 112

7.7. Plant Performance Data

The table below summarizes the productions/ consumptions and CO_2 emissions relevant to the overall Unit Hydrogen plant with CO_2 capture-capture from syngas case.

Plant Performance Data Case 3											
INLET STREAMS											
Natural Gas (as Feedstock)	t/h	26.231									
Natural Gas (as Fuel)	t/h	7.348									
Natural Gas (Total Consumption)	t/h	33.579									
Natural Gas LHV	MJ/kg	46.50									
Total Energy Input	MW	433.72									
OUTLET STREAMS											
Hydrogen Product to BL	t/h	8.994									
	Nm³/h	100,000									
Hydrogen LHV	MJ/kg	119.96									
Total Energy in the Product	MW	299.70									
POWER BALANCE											
Gross Power Output from the COGEN Plant	MWe	11.700									
Hydrogen Plant Power Consumption	MWe	-1.314									
COGEN Plant + Utilities + BoP Consumption	MWe	-1.677									
CO2 Capture Plant Consumption	MWe	-2.001									
CO2 Compression and Dehydration Unit	MWe	-6.282									
Excess Power to the Grid	MWe	0.426									
SPECIFIC CONSUMPTIONS											
Natural Gas (as Feedstock) GJ/100	$0 \text{ Nm}^3 \text{ H}_2$	12.197									
Natural Gas (as Fuel) GJ/100	$0 \text{ Nm}^3 \text{ H}_2$	3.416									
Feed + Fuel GJ/1000 Nm ³ H ₂											
SPECIFIC EMISSIONS											
Specific CO2 Emission t/100	O Nm³ H₂	0.0888									
Specific CO2 Captured t/100	$0 \text{ Nm}^3 \text{ H}_2$	0.8004									
Overall CO2 Capture Rate (Case Specific)		90.00%									
Overall CO2 Capture Rate (as Compared to Base Case)		89.02%									

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant	Date:	December 2016
		Sheet: 79 of 112

7.8. Preliminary Utilities Consumption

This section presents the different utilities consumption (usage) of the Hydrogen Plant, Power Island, CO₂ Capture Plant, CO₂ Compression and Dehydration, and others.

FOS	STER	ELER						ESTIN	IATED	UTILIT	Y CON	NSUMF	TIONS	5			
CUSTOMER NAME	: IEAGHG						Case 3 -	Hydrogen	REV.	REV. 0	REV. 1	REV. 2					SHEET
PROJECT NAME:	TECHNO-ECONOMIC EVALUATION	NOF H2 PRODU	ICTION WIT	TH CO2 CA	PTURE			vith CO2	BY	GA							1
	1BD0840 A						-	from flue	СНКД	GC							OF
LOCATION:	THE NETHERLAND							ng MEA	DATE	April 2015							1 1
		ELECTRIC	C POWER		STEAM t/h		EFFLUENT	1	DMW	RAW WATER		G WATER	SEA V	VATER	FUEL	INSTR. AIR	Nitrogen
		LOAD BHP	kW	LP	MP	HP	t/h	t/h	t/h	t/h	∆T (°C)	m³/hr	∆T (°C)	m³/hr	MMKcal/h	Nm³/h	Nm³/h
ŀ	IYDROGEN PLANT		1,314	0.7	0.00		-2.40	-43.9 (2)	143.4 (1)	0.00	11	13.9			81.7	100	(250)
<u>-</u>						-97.1											
			2.004	96.4							11	E 604					
	CO2 CAPTURE		2,001	90.4					-96.4	-19.00		5,601					
			0.000								11	76	7	4 000			
<u>c</u>	O2 COMPRESSION		6,282								11	70	/	1,638			
						97.1											
	POWER ISLAND		-11,700	-97.1		57.1											
			1,677				-14.1			61.1	11	-5,691	7	8,951	0.5	100	(250)
	UTILITIES / BoP								-47.0							-200	(-500)
	TOTAL		-427	0	0	0	-16.5	-43.9	0	42.1	-	0	-	10,589	82.2	0	0
				L	I	I	NOTES: (1) DMW is (2) Losses	includes w	ater consun	condensate	action and o	deaerator ve	ent	I	n in the hydro	ogen plant	I

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 80 of 112

7.9. Preliminary Equipment List and Size of Main Components/Packages

This section presents the preliminary list of equipment and main components/packages relevant to the Hydrogen Plant, Power Island, CO₂ Capture Plant, CO₂ Compression and Dehydration and BoP of Case 3.

The size of the main equipment included for the CO_2 Capture Plant are not provided since the relevant information used in this study are retrieved from other reference studies which are confidential.

		PREL	IMINARY EQ	UIPMENT LIS	ST	REVISION	DATE	BY	СНКД	APP	SHEET
(III)	()		IEA GHG			0	April 2015	GA	GC	GC	1
(FOS	STER WHEELER		TECHNO-ECONOMI	IC EVALUATION OF H	I 2 PRODUCTION						
		PROJECT NAME:	WITH CO2 CAPTUR	E							OF
			1BD0840A								
		LOCATION	THE NETHERLAND								8
				N PLANT WITH CO2 (CAPTURE FROM						1
			FLUE GAS USING M								
										1	
			s	IZE	DESIGN	DESIGN					T
ITEM No.	DESCRIPTION	TYPE	ID	L/H	PRESSURE	TEMPERATURE	MATERIAL	REM	ARKS		REV.
			mm	mm	MPa	°C					
DRUMS											
	FUEL GAS K.O. DRUM	VERTICAL								1	+
		VENTIONE									
	STEAM DRUM	HORIZONTAL									
	PROCESS CONDENSATE SEPARATOR	VERTICAL									
											-
	BLOWDOWN DRUM	VERTICAL									
	DEAERATOR	Stripping Section: Vertical									
		Storage Section: Horizontal									
						1					+
										<u> </u>	
				1	1	1					1
					1	1					+
						+					+
										ļ	
FWI -110/45				BASE: EQLIST0_00.X	LT				PRINTED ON:		24/06/2015

		PRE		UIPMENT LI	ST	REVISION	DATE	BY	СНКД	APP	SHEET
FOS	TER 🖉 🗤 HEELER'	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	2
		PROJECT NAME:	TECHNO-ECONOMI	C EVALUATION OF H	2 PRODUCTION						OF
			WITH CO2 CAPTURI	E							01
		FWI CONTRACT:	1BD0840A								_
		LOCATION	THE NETHERLAND								8
		CASE	CASE 3: HYDROGEN FLUE GAS USING M		APTURE FROM						0
		UNIT	HYDROGEN PLANT								-
	1		1		1		1	I		1	1
ITEM No.	DECODIDION	TYPE		ZE	DESIGN PRESSURE	DESIGN TEMPERATURE	MATERIAL	DEM			DEV
ITEM No.	DESCRIPTION	TYPE	ID	L/H			MATERIAL	KEW	ARKS		REV.
			mm	mm	MPa	°C					
REACTORS											
	SULPHUR ABSORBERS	VERTICAL	2450	3650	4.075	400					
	PRE-REFORMER	VERTICAL	2100	3050	4.075	530					
	SHIFT CONVERTER	VERTICAL	3400	4400	2.000	430					
	Shift COnverter	VERTICAL	3400	4400	3.080	430					
			1								1
			+								-
			1							1	
FWI -110/45				BASE: EQLIST0_00.XL					PRINTED ON:		24/06/2015

		PREL		JIPMENT LI	ST	REVISION	DATE	BY	СНКД	APP	SHEET
FOS	TER 🕅 WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	3
		DDO IFOT NAME	TECHNO-ECONOMI	C EVALUATION OF I	1 2 PRODUCTION	-					
		PROJECT NAME:	WITH CO2 CAPTUR	E							OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								7
		CASE	CASE 3: HYDROGEN	N PLANT WITH CO2	CAPTURE FROM						8
		CASE	FLUE GAS USING M	EA							
		UNIT	HYDROGEN PLANT								
		1	1	1	1	T	r	1		1	- -
			DUTY	AREA	DESIGN PRESSURE	DESIGN TEMPERATURE					
ITEM No.	DESCRIPTION	TYPE			SS / TS	SS / TS	MATERIAL	REM	IARKS		REV.
			MM kcal/h	m²	MPa	°C					
HEAT EXCHANGE	RS & COILS				1						1
			1		1						1
	FEED PRE-HEATER	SHELL & TUBE									1
	HTS WASTE HEAT BOILER										
	HIS WASTE HEAT BUILER	SHELL & TUBE									
											+
	BFW PRE-HEATER	SHELL & TUBE									
											Τ
	CONDENSATE HEATER	SHELL & TUBE									
					+						
											+
	DEMIWATER PRE-HEATER	SHELL & TUBE									1
					1	1				1	1
	BLOWDOWN COOLER	SHELL & TUBE									1
											+
					ļ					ļ	
											1
	1				1						+
			1		1						+
FWI -110/45				BASE: EQLIST0_00.>	1 T				PRINTED ON:		24/06/201

r		PRE	LIMINARY E	QUIPMENT L	.IST	REVISION	DATE	BY	CHKD	APP	SHEET
FOS	TER WWHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	4
		DDO ISOT NAME	TECHNO-ECONOMI	C EVALUATION OF	H 2 PRODUCTION					1	
		PROJECT NAME:	WITH CO2 CAPTUR	E							OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								1
			CASE 3: HYDROGE	N PLANT WITH CO2	CAPTURE FROM						8
		CASE	FLUE GAS USING N	IEA							
		UNIT	HYDROGEN PLANT								7
					DESIGN	DESIGN					Τ
ITEM No.	DESCRIPTION	TYPE	DUTY	AREA	PRESSURE SS / TS	TEMPERATURE SS/TS	MATERIAL	REM	IARKS		REV.
			MM kcal/h	m²	MPa	°C					
			inin Keuvi		initu	Ŭ				<u> </u>	+
HEAT EXCHANGE											
	COMBUSTION AIR / FLUE GAS EXCHANGER										
										<u> </u>	
		001									
	BFW PREHEATER COIL	COIL									
										ł	
	STEAM GENERATOR COIL	COIL									
	STEAM SUPERHEATER COIL	COIL									
										<u> </u>	'
	FEED PREHEATER COIL	COIL									
										<u> </u>	
						ļ				 	
	PRE-REFORMER FEED PREHEATER COIL	COIL									
		OOL									
						1				1	
	REFORMER FEED PREHEATER COIL	COIL									
										 	
<u> </u>										<u> </u>	
	REFORMER WASTE HEAT BOILER	SHELL & TUBE									
										<u> </u>	1
										<u> </u>	+
FWI -110/45				BASE: EQLIST0_00.X		l		1	PRINTED ON:	L	24/06/2015

		PREL	IMINARY EQ	JIPMENT LIS	бТ	REVISION	DATE	BY	СНКД	APP	SHEET
FOS	TER 🖉 WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	5
		PROJECT NAME:	TECHNO-ECONOMI	C EVALUATION OF H	I 2 PRODUCTION						OF
		PROJECT NAME:	WITH CO2 CAPTUR	E							OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								
		CASE	CASE 3: HYDROGEN		CAPTURE FROM						8
			FLUE GAS USING M HYDROGEN PLANT	EA							-
		UNIT	HIDROGEN PLANT								
		DUTY	s	ZE	DESIGN	DESIGN	MATERIAL				
ITEM No.	DESCRIPTION	5011	WIDTH	LENGTH	PRESSURE	TEMPERATURE		REM	ARKS		REV.
		MM Kcal/h	mm	mm	MPa	°C	HEADER/TUBES				
AIR COOLERS											
	RAW HYDROGEN AIR COOLER		1								1
			1							1	1
<u> </u>			+								+
											+
FIRED EQUIPMENT	[<u> </u>
		00.00 (#1)									
	STEAM REFORMER FURNACE	82.63 (**)						(**) Radiant Duty			
											+
											+
											<u> </u>
			1								1
			1		1					1	+
			+		+						+
											<u> </u>
					ļ						
			1							1	1
			1		 						+
											+
			ļ		ļ						_
FWI -110/45				BASE: EQLIST0_00.X	LT				PRINTED ON:		24/06/2015

(I		LIMINARY EC	UIPMENT LI	ST	REVISION	DATE	BY	СНКД	APP	SHEET
FOS	TER WHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	6
		PROJECT NAME:	TECHNO-ECONOMI	C EVALUATION OF H	2 PRODUCTION						OF
		PROJECT NAME:	WITH CO2 CAPTUR	E							OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								
		CASE	CASE 3: HYDROGEN		CAPTURE FROM						8
		UNIT	FLUE GAS USING M HYDROGEN PLANT								_
		UNIT	HIDROGEN PLANT								
		T	1	T	1	1	T	I		1	
ITEM No.	DESCRIPTION	ТҮРЕ	FLOW	HEAD	DESIGN PRESSURE	Brake Power	MATERIAL	REM	ARKS		REV.
			m³/h	m	MPa	kW	CASING/IMPELLER				
PUMPS											
	BFW CIRCULATION PUMPS	Centrifugal									
	BFW FEED PUMPS	Centrifugal						Two pumps electrical m	otor driven		
											_
			_								
											_

(=====		PRE	LIMINARY EC	QUIPMENT LI	ST	REVISION	DATE	ВҮ	СНКД	APP	SHEET
FOS	TER 🖉 VV HEELER)	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	7
		PROJECT NAME:	TECHNO-ECONOM WITH CO2 CAPTUR	IC EVALUATION OF H	2 PRODUCTION						OF
		FWI CONTRACT:	1BD0840A	Æ							
		LOCATION	THE NETHERLAND								-
				N PLANT WITH CO2	CAPTURE FROM						8
		CASE	FLUE GAS USING N								_
		UNIT	HYDROGEN PLANT								
				PRESSURE	DESIGN						
ITEM No.	DESCRIPTION	TYPE	FLOW	INLET/OUTLET	PRESSURE	Brake Power	MATERIAL	RE	MARKS		REV.
			Nm ³ /h	MPa	MPa	kW	CASING/IMPELLER				
COMPRESSORS &	BLOWERS										
	RECYCLE HYDROGEN COMPRESSORS PACKAGE	Reciprocating	653	2.505 / 4.001	4.40	16					
	COMBUSTION AIR BLOWERS							Two Blowers: one op	erating, one spare		
											-
											<u> </u>

	_	PRE			ST	REVISION	DATE	BY	CHKD	APP	SHEET
FOS	TER WWHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	8
		PROJECT NAME:	TECHNO-ECONOM	IC EVALUATION OF H	I 2 PRODUCTION						OF
		PROJECT NAME:	WITH CO2 CAPTUR	RE							OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								
		CASE	CASE 3: HYDROGE FLUE GAS USING N	N PLANT WITH CO2	CAPTURE FROM						8
		UNIT	HYDROGEN PLAN								-
							1		1		
				PRESSURE	DESIGN	DESIGN					
ITEM No.	DESCRIPTION	ТҮРЕ	FLOW	INLET/OUTLET	PRESSURE	TEMPERATURE	MATERIAL	REM	MARKS		REV.
			Nm³/h	MPa	MPa	°C					
MISCELLANEA											
	STEAM VENT SILENCER										
	REFORMER STEAM DESUPERHEATER										
											<u> </u>
	PREREFORMER STEAM DESUPERHEATER										
	PHOSPHATE PACKAGE										_
	EXPORT STEAM DESUPERHEATER										
	OXYGEN SCAVENGER PACKAGE										
	pH CONTROL PACKAGE										
	PSA UNIT		147865	2.58/2.51 (H2 side)	2.8	80					+
											-
											+
										1	-
										1	+
FWI -110/45		L		BASE: EQLISTO_00.X	LT			I	PRINTED ON:	1	24/06/2015

			PRELIMINARY	EQUIPMENT LIS	г	REVISION	DATE	ВҮ	CHKD	APP	SHEET
	TER WWHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	1
FOS	TER W WHEELER	PROJECT NAME:	TECHNO-ECONOM	IC EVALUATION OF H	2 PRODUCTION WITH						OF
		PROJECT NAME:	CO2 CAPTURE								UF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								
		CASE	CASE 3: HYDROGE GAS USING MEA	N PLANT WITH CO2 C	APTURE FROM FLUE						5
		UNIT	CO2 REMOVAL SYS	STEM							
			s	SIZE	DESIGN	DESIGN					
ITEM No.	DESCRIPTION	TYPE	ID	L/H	PRESSURE	TEMPERATURE	MATERIAL	REM	ARKS		REV.
			mm	mm	МРа	°C					
TOWERS											
	ABSORBER	VERTICAL									
		1									
	STRIPPER	VERTICAL		1							
				1							
RUMS											
	FLASH DRUM	HORIZONTAL									
	AMINE SOLUTION TANK	HORIZONTAL									
	SCRUBBER	VERTICAL									
				1							
	REFLUX DRUM	HORIZONTAL									+
			+	+							
WI -110/45	1	L	1	BASE: EQLIST0_00.XI	T	1		1	PRINTED ON:	1	24/06/201

_			PRELIMINARY E	QUIPMENT LIST		REVISION	DATE	BY	СНКД	APP	SHEET
FOS	TER WWHEELER	CLIENT:	IEA GHG		2 PRODUCTION WITH	0	April 2015	GA	GC	GC	2
		PROJECT NAME:		C EVALUATION OF H	2 PRODUCTION WITH						OF
		FWI CONTRACT:	CO2 CAPTURE 1BD0840A								
		LOCATION	THE NETHERLAND								-
		CASE	HYDROGEN PLANT FLUE GAS	WITH CO2 CAPTURE	-CAPTURE FROM						5
		UNIT	CO2 REMOVAL SYS	TEM							
		TYPE	DUTY	AREA	DESIGN PRESSURE	DESIGN TEMPERATURE		DEM			DEV
ITEM No.	DESCRIPTION	TYPE			SS / TS	SS/TS	MATERIAL	REW	ARKS		REV.
			MM kcal/h	m²	MPa	°C					_
HEAT EXCHANGE	RS		-								
	LEAN/RICH AMINE EXCHANGER	SHELL & TUBE									
	LEAN SOLVENT COOLER	SHELL & TUBE									
	STRIPPER CONDENSER										
	STRIPPER REBOILER	KETTLE									
	RECLAIMER	KETTLE									
											_
	WATER WASH COOLER										
	SCRUBBER COOLER										
	SEMI-LEAN SOLVENT COOLER										
											_
WI -110/45	GAS -GAS HEATER								PRINTED ON:		

			PRELIMINARY E	QUIPMENT LIST		REVISION	DATE	BY	CHKD	APP	SHEET	
FOS	TER 🖉 VV HEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	3	
		PROJECT NAME:		C EVALUATION OF H	² PRODUCTION WITH						OF	
			CO2 CAPTURE									
		FWI CONTRACT:	1BD0840A								4	
		LOCATION	THE NETHERLAND	WITH CO2 CAPTURE	-CAPTURE FROM							
		CASE	FLUE GAS							5		
		UNIT	CO2 REMOVAL SYS	TEM							1	
		1							•		_	
			DUTY	AREA	DESIGN PRESSURE	DESIGN TEMPERATURE	TEMPERATURE					
ITEM No.	DESCRIPTION	TYPE			SS / TS	SS / TS	MATERIAL	REN	IARKS		REV.	
			MM kcal/h	m²	MPa	°C						
PUMPS												
	BOOSTER PUMPS	CENTRIFUGAL										
	REFLUX PUMP	CENTRIFUGAL									-	
											-	
	SOLVENT MAKE UP PUMP											
											-	
	SEMI-LEAN SOLVENT PUMP			-								
											+	
										1		
	RICH SOLVENT PUMP											
	CIRCULATION PUMP											
	WASH WATER PUMP											
	CO2 PUMP (CO2 COMPRESSOR PACKAGE)	CENTRIFUGAL										
											1	
											1	
		1						1		1	1	
FWI -110/45		1	1	BASE: EQLIST0_00.X	I			1	PRINTED ON:	1	24/06/2015	

<u></u>			PRELIMINARY EC	QUIPMENT LIST		REVISION	DATE	BY	CHKD	APP	SHEET
FOS	TER VVHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	4
		PROJECT NAME:	TECHNO-ECONOMIC CO2 CAPTURE	C EVALUATION OF H 2	PRODUCTION WITH						OF
1		FWI CONTRACT:	1BD0840A								
1		LOCATION	THE NETHERLAND								
l		CASE		WITH CO2 CAPTURE-C	CAPTURE FROM						5
1			FLUE GAS	TEM							-
		UNIT	CO2 REMOVAL SYS	IEM							
			FLOW	PRESSURE	DESIGN	Brake Power	Brake Power MATERIAL			1	
ITEM No.	DESCRIPTION	TYPE		INLET/OUTLET	PRESSURE			REMARKS		1	REV.
			Nm³/h	MPa	МРа	kW	CASING/IMPELLER				
COMPRESSORS &	BLOWERS									1	
	CO2 COMPRESSORS	CENTRIFUGAL						EIGHT Stages, Pin= 0 Tin =43°C, Tout=24	ver: 6170 kW 0.16 MPa, Pout= 11 MPa, °C, MW=42.6, Electical be included		
								Compressor Packag and eight	e includes 4 separators trim coolers		1
	FLUE GAS BLOWER										
											1
											_
		<u> </u>									
											+
											<u> </u>
											+
	+										+
		<u> </u>									
FWI -110/45	<u> </u>	L		BASE: EQLIST0_00.XLT					PRINTED ON:		24/06/201

			PRELIMINARY E	QUIPMENT LIST		REVISION	DATE	BY	CHKD	APP	SHEET
FOS	STER WWHEELER	CLIENT:	IEA GHG			0	April 2015	GA	GC	GC	5
		PROJECT NAME:	TECHNO-ECONOMI CO2 CAPTURE	C EVALUATION OF H 2	PRODUCTION WITH						OF
		FWI CONTRACT:	1BD0840A								
		LOCATION	THE NETHERLAND								
		CASE	HYDROGEN PLANT	WITH CO2 CAPTURE-C	CAPTURE FROM						5
			FLUE GAS	7514							-
		UNIT	CO2 REMOVAL SYS	IEM							
				PRESSURE	DESIGN						
ITEM No.	DESCRIPTION	ТҮРЕ	FLOW	INLET/OUTLET	PRESSURE		REMARKS			REV.	
			Nm³/h	МРа	МРа	kW	CASING/IMPELLER	-			
MISCELLANEA											
	DRYER UNIT PACKAGE										
	CARBON FILTER										
			1							+	┤───┦
											+
			ļ							ļ	
FWI -110/45		1		BASE: EQLIST0_00.XLT		1	1		PRINTED ON:		24/06/2015

	I	PRELIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER WHEELER	CLIENT:	IEA GHG	0	April 2015	NF	GC	GC	1
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	CASE 3: HYDROGEN PLANT WITH CO2 CAPTURE FROM FLUE GAS USING MEA						1
	UNIT	POWER ISLAND						

CONFIDENTIAL

								1	
		TYPE	SIZE	PRESSURE	DESIGN PRESSURE	DESIGN TEMPERATURE		2511121/2	
ITEM No.	DESCRIPTION	TYPE		INLET/OUTLET			MATERIAL	REMARKS	REV.
			-	MPa	MPa	°C			
POWER ISLAND	1								
	STEAM TURBINE AND GENERATOR PACKAGE								
	Including								
	STEAM TURBINE	Backpressure type	11 MWe	4.2 / 0.35				Including: lube oil system; Cooling system; Hydraulic control system;	
								Cooling system; Hydraulic control system;	
								Seal system Drainage system Gland condenser	
	STEAM TURBINE GENERATOR		13 MVA					Including relevant auxiliaries	
	STEAM TURBINE BYPASS SYSTEM								
WI -110/45				BASE: EQLIST0_00.XLT				PRINTED ON:	24/06/2015

	PRE	LIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER WHEELER	CLIENT:	T NAME: TECHNO-ECONOMIC EVALUATION OF H 2 PRODUCTION WITH CO2 CAPTURE NTRACT: 1BD0840A	0	April 2015	NF	GC	GC	1
	PROJECT NAME:							OF
	WI CONTRACT: 1BD0840A							
	LOCATION	THE NETHERLAND						
	CASE	CASE 3: HYDROGEN PLANT WITH CO2 CAPTURE FROM FLUE GAS USING MEA						3
	UNIT	UTILITIES AND BOP						

Г

				CONFIDE	ENTIAL				
ITEM No.	DESCRIPTION	ТҮРЕ	SIZE	PRESSURE	DESIGN PRESSURE	DESIGN TEMPERATURE	MATERIAL	REMARKS	RE
			-	MPa	MPa	°C	-		
COOLING WATER	R SYSTEM								
	SEA WATER PUMPS	Centrifugal	5500 m3/h x 25 m 560 kWe					Two operating one spare	
	SEA WATER / CLOSED COOLING WATER EXCHANGER		70 MWth						
	CLOSED COOLING WATER PUMPS		5800 m3/h x 25 m 600 kWe					One operating one spare	
	CLOSED COOLING WATER CIRCUIT EXPANSION DRUM								
	CORROSION INHIBITOR PACKAGE								
INSTRUMENT / PL	LANT AIR SYSTEM								
	AIR COMPRESSOR PACKAGE							including: - Air Compressor - Inter/after coolers - KO Drums (including final KO drum)	
	AIR DRYING PACKAGE	Adsorption bed	200 Nm3/h					including: - Adsorbent Bed (with	
								Adsuber tegenaration system) Regeneration Electrical Heater Pre Filters Atter Filters	
	IA RECEIVER DRUM	vertical							
		1							

	PR	ELIMINARY EQUIPMENT LIST	REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER	CLIENT:	IEA GHG	0	April 2015	NF	GC	GC	2
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	CASE 3: HYDROGEN PLANT WITH CO2 CAPTURE FROM FLUE GAS USING MEA						3
	UNIT	UTILITIES AND BOP						

CONFIDENTIAL

ITEM No.	DESCRIPTION	TYPE	SIZE	PRESSURE	DESIGN PRESSURE	DESIGN TEMPERATURE	MATERIAL	REMARKS	REV.
TEWING.	DESCRIPTION	IIFE		INLET/OUTLET			WATERIAL	REMARKS	KEV.
			-	MPa	MPa	°C			
RAW / DEMI WATE	R SYSTEM								
	RAW WATER TANK	Fixed roof						12 h storage	
	RAW WATER FILTRATION PACKAGE		65 m3/h						
	POTABLE WATER TANK	Fixed roof						12 h storage	
	POTABLE WATER PACKAGE								
	DEMI WATER PLANT FEED PUMP		65 m3/h x 25 m 7.5 kW						
	DEMI WATER PACKAGE UNIT		50 m3/h DW production					Including: - Multimedia filter	
								 Reverse Osmosis (RO) Cartidge filter Electro de-ionization system 	
	DEMIWATER PUMPS		50 m3/h x 50 m 15 kW						
	DEMIWATER TANK	Fixed roof						12 h storage	

	PRELIMINARY EQUIPMENT LIST		REVISION	DATE	BY	СНКД	APP	SHEET
FOSTER	CLIENT:	CLIENT: IEA GHG		April 2015	NF	GC	GC	3
	PROJECT NAME:	TECHNO-ECONOMIC EVALUATION OF H $_{\rm 2}$ PRODUCTION WITH CO2 CAPTURE						OF
	FWI CONTRACT:	1BD0840A						
	LOCATION	THE NETHERLAND						
	CASE	CASE 3: HYDROGEN PLANT WITH CO2 CAPTURE FROM FLUE GAS USING MEA						3
	UNIT	UTILITIES AND BOP						

CONFIDENTIAL PRESSURE DESIGN TEMPERATURE DESIGN PRESSURE SIZE DESCRIPTION TYPE MATERIAL REMARKS INLET/OUTLET -MPa MPa °C Including: - Intake Air Filter - Air Compressor NITROGEN PRODUCTION PACKAGE 500 Nm3/h

						- Air Raceiver - Inter/after coolers - KO Drums - Molecular Sieve Water Absorber (Air Dryer) - One Lapansion Turbine - One Cryogenic Distillation Column - One Main Heat Exchanger	
						-	
	LIQUID NITROGEN STORAGE AND VAPORISATION PACKAGE		500 Nm3/h			Including: - Liquid Nitrogen Storage tank - Nitrogen Vaporizer (Air Fin Type)	
						 Nitrogen Vaporizer (Air Fin Type) Nitrogen heater (electrical) 	
	GASEOUS NITROGEN BUFFER VESSEL						
FLARE SYSTEM							
	FLARE KO DRUM	Horizontal					
	FLARE PACKAGE		Max relief flowrate 102,000 kg/h; MW:12			Including riser; tip, seal drum	
	FLARE KO DRUM PUMPS	Centrifugal				One operating one spare	
<u>BoP</u>							
	INTERCONNECTING						
	BUILDING (CONTROL ROOM, ELECTRICAL SUBSTATION, LAB)						
	DRAIN SYSTEM						
	FIRE FIGHTING						
	ELECTRICAL SYSTEM					Up to generator terminals	

FWI -110/45

ITEM No.

NITROGEN GENERATION PACKAGE

BASE: EQLIST0_00.XLT

REV.

24/06/2015

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

December 2016

Sheet: 81 of 112

8. Economic Evaluation

The purpose of this section is to present the results of the economic analysis carried out in evaluating the Levelised Cost of Hydrogen (LCOH) and the CO_2 Avoidance Cost (CAC) of the different study cases (as listed in Table 1).

Cases	Description				
Base case	Steam reformer w/o CO ₂ capture				
Case 1A	Case 1A CO ₂ capture from syngas using MDEA				
Case 1B	CO ₂ capture from syngas using MDEA with H ₂ -rich fuel firing burners				
Case 2A	CO ₂ capture from PSA tail gas using MDEA				
Case 2B	CO ₂ capture from PSA tail gas using Cryogenic and Membrane Technology				
Case 3	CO ₂ capture from flue gas using MEA				

Table 1 - Study Cases

All inputs used to perform the economic analysis are set in accordance with the general assumptions and criteria reported in the Reference Document (Task 2) – see Annex I of this report.

The capital cost and the annual operating & maintenance (O&M) costs for the different cases have been evaluated and are presented in the succeeding sections, along with the results of the financial model.

The annual operating and maintenance costs are based on the overall heat and mass balances of each cases as presented in previous section.

Due to the possible variation to some of the assumed economic data, an exhaustive sensitivity analysis is also performed and presented in this chapter:

- Natural Gas Price,
- Electricity Price,
- Plant Economic Life,
- Discount Rate,
- Costs Related to CO₂ Emission (as Tax) and CO₂ Transport & Storage.

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

December 2016 Sheet: 82 of 112

8.1. Investment Cost Estimates

8.1.1. <u>Definitions</u>

The basis of estimating the main capital and operating cost are described in the Reference Document (Task 2) – see Annex I of this report.

This section summarises the estimates on the Total Capital Requirement (TCR), also named as Total Investment Cost (TIC), of the various study cases.

The TCR is defined in general accordance to the White Paper "*Toward a common method of cost estimation for CO₂ capture and storage at fossil fuel power plants*", (March 2013), produced in collaboration with several authors from EPRI, IEAGHG, Carnegie Mellon University, MIT, IEA, GCCSI and Vattenfall.

The Total Capital Requirement (TCR) is defined as the sum of:

- Total Plant Cost (TPC)
- Interest during construction
- Spare parts cost
- Working capital
- Start-up costs
- Owner's costs.

The **Total Plant Cost** (**TPC**) of the different study cases is further broken down into the cost estimates of the different main process units:

- Reference Case: Hydrogen Plant w/o CO₂ Capture
 - Steam Reformer Based Hydrogen Plant
 - Power Island
 - o Other Utilities and Balance of Plant (BoP)
- Hydrogen Plant w/ CO₂ Capture
 - Steam Reformer Based Hydrogen Plant
 - Power Island
 - o CO₂ Capture Plant
 - CO₂ Compression and Dehydration Unit
 - Other Utilities and Balance of Plant (BoP)

8.1.2. <u>Estimating Methodology</u>

The estimate is an AACE Class 4 estimate (accuracy range +35%/-15%), based on 4Q2014 price level, in euro ($\textcircled{\bullet}$).

FOSTER

IEAGHG

Revision No.: FINAL Date: December 2016

Sheet: 83 of 112

The Total Plant Cost (TPC) is defined as the installed cost of the plant, including contingencies. Furthermore, for each process units, the TPC is estimated based on the following items:

• Direct materials

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant

- Construction
- EPC services
- Other costs
- Contingency.

The estimating methodology used for the evaluation of the Total Plant Cost (TPC) items of the process units is described in the following sections.

Direct Materials

For the different process units, the direct materials are estimated by using Amec Foster Wheeler's in-house database or conceptual estimating models.

Where detailed and sized equipment list has been developed, a K-base (commercially available software) has been used to produce the cost estimates. For units having capacity only, cost is based on previous estimates done for similar units, by scaling up or down (as applicable) the cost on capacity ratio.

Construction and EPC Services

For each unit or block of units, the construction and EPC services are factored based on the direct materials costs. The factor (multipliers) used are based on in-house data gathered from the cost estimates made in the past projects with similar plants.

Other Costs

Other costs mainly include:

- Temporary facilities;
- Vendor assistance;
- Miscellaneous expenses (i.e. heavy lift, chemical cleaning,...).

Other costs are estimated as a percentage of the construction cost, in accordance with Amec Foster Wheeler's experience and in-house database.

<u>Contingency</u>

A project contingency is added to the capital cost to give a 50% probability of a cost over-run or under-run. For the accuracy considered in this study, Amec Foster Wheeler's view is that contingency should be in the range of 20% of the total installed cost.

FOSTER

IEAGHG

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

Sheet: 84 of 112

December 2016

The Total Capital Requirement (TCR) is the sum of following items with their corresponding assumptions:

- Total Plant Cost (TPC) ¹ as reported in the succeeding pages
- Interest during construction which is assumed to be the same as the discount rate (8%).
- Spare parts cost which is assumed as 0.5% of the TPC.²
- Working capital, including 30 days inventories of chemicals and other consumables.
- Start-up costs, which is assumed as 2% of TPC, plus 25% of the monthly feedstock and fuel cost, 3 months of the operation labour and maintenance labour cost, and 1 month of cost related to catalyst, chemicals, waste disposals cost and maintenance materials cost.³
- The cost for the initial solvent inventory required for the amine based CO₂ capture plant
- Owner's costs and fees, which assumed as 7% of TPC.⁴

8.1.3. <u>Summary of Results - TPC and TCR</u>

The TPC and TCR for the different cases evaluated in this study are summarised in Table 2 below. The breakdown of the TPC for the different study cases are presented in the succeeding pages. Each table includes a related pie chart of the Total Plant Cost to show the percentage weight of each unit relative to the overall capital cost of the plant. The breakdown of the TCR are presented in Annex III.

Case	Total Plant Cost (TPC) (M€)	Total Capital Requirement (TCR) (M€)						
Base Case	170.95	222.89						
Capture from Shifted Syngas								
Case 1A	201.80	263.91						
Case 1B	228.48	298.68						
Capture from PSA Tai	l Gas							
Case 2A	226.07	295.21						
Case 2B	241.44	313.87						
Capture from Flue Gas								
Case 3	305.33	398.48						

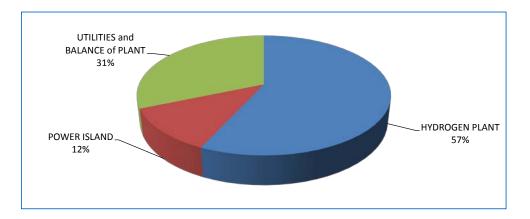
 Table 2. TPC and TCR of the Different Study Cases

¹ The capital expenditure curve during construction is based on 20%-45%-35% distribution.

 $^{^2}$ The capital expenditure curve for the spare parts also follows the 20%-45%-35% distribution.

³ The Start-Up cost are charged on Year -1 (3rd year of the project).

⁴ All of the owner's cost is charged on Year -3 (1st year of the project).


Revision No.: FINAL

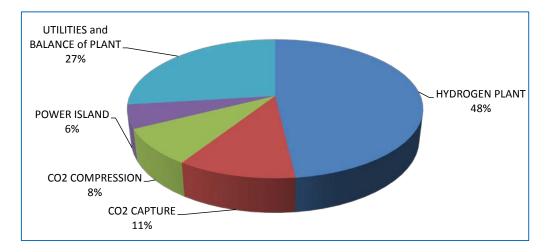
Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant

Date:	December 2016
Date.	Determoter 2010

Sheet: 85 of 112

Ţ	OSTER	CONTRACT: 1-BD-0840A CLIENT: IEAGHG LOCATION: THE NETHERLANDS DATE: JUNE 2015 REV.: 0				
POS.	DESCRIPTION	HYDROGEN PLANT	POWER ISLAND	UTILITIES and BALANCE of PLANT	TOTAL COST EURO	NOTES / REMARKS
1	DIRECT MATERIAL	40,677,000	8,559,000	18,848,000	68,084,000	1) ESTIMATE IS BASED ON 4th QUARTER YEAR 2014
2	CONSTRUCTION	25,698,000	5,643,000	17,807,000	49,148,000	PRICE LEVEL
3	DIRECT FIELD COST	66,375,000	14,202,000	36,655,000	117,232,000	2) ESTIMATE ACCURACY : +35 -15% AACE CLASS IV
4	OTHER COSTS	1,885,000	483,000	1,290,000	3,658,000	
5	EPC SERVICES	12,750,000	2,085,000	6,735,000	21,570,000	
6	TOTAL INSTALLED COST	81,010,000	16,770,000	44,680,000	142,460,000	
7	PROJECT CONTINGENCY	16,202,000	3,354,000	8,936,000	28,492,000	BUSINESS CONFIDENTIAL
8	TOTAL PLANT COST (TPC)	97,212,000	20,124,000	53,616,000	170,952,000	1

Revision No.: FINAL

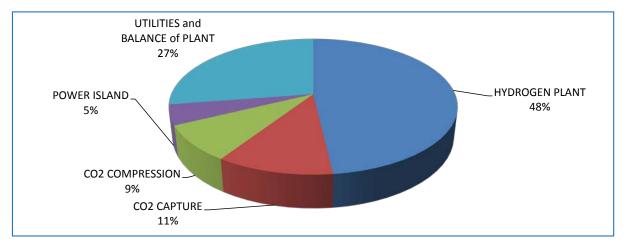

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant

Date:

December 2016

Sheet: 86 of 112

Techno-Economic Evaluation of Standalone H2 Plant Case 1A - CO2 capture from syngas using MDEA								CONTRACT: 1-BD-0840A CLIENT: IEAGHG LOCATION: THE INETHERLANDS DATE: JUNE 2015 REV.: 0
POS.	DESCRIPTION	HYDROGEN PLANT	NOTES / REMARKS					
1	DIRECT MATERIAL	40,677,000	9,633,000	7,983,000	4,776,000	19,318,000	82,387,000	1) ESTIMATE IS BASED ON 4th QUARTER YEAR
2	CONSTRUCTION	25,698,000	5,804,000	4,012,000	3,084,000	18,195,000	56,793,000	2014 PRICE LEVEL
3	DIRECT FIELD COST	66,375,000	15,437,000	11,995,000	7,860,000	37,513,000	139,180,000	2) ESTIMATE ACCURACY : +35 -15% AACE CLASS IV
4	OTHER COSTS	1,885,000	415,000	300,000	235,000	1,270,000	4,105,000	
5	EPC SERVICES	12,750,000	2,538,000	1,875,000	1,125,000	6,597,000	24,885,000	
6	TOTAL INSTALLED COST	81,010,000	18,390,000	14,170,000	9,220,000	45,380,000	168,170,000	
7	PROJECT CONTINGENCY	16,202,000	3,678,000	2,834,000	1,844,000	9,076,000	33,634,000	BUSINESS CONFIDENTIAL
8	TOTAL PLANT COST (TPC)	97,212,000	22,068,000	17,004,000	11,064,000	54,456,000	201,804,000	

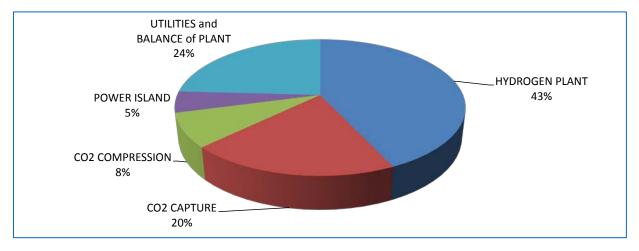

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant

December 2016

Sheet: 87 of 112

Techno-Economic Evaluation of Standalone H2 Plant Case 1B - CO2 capture from syngas using MDEA with H2-rich fuel firing burners								CONTRACT: 1-BD-0840A CLIENT: IEAGHG LOCATION: THE INETHERLANDS DATE: JUNE 2015 REV: 0
POS.	DESCRIPTION	HYDROGEN PLANT	CO2 CAPTURE	CO2 COMPRESSION	POWER ISLAND	UTILITIES and BALANCE of PLANT	TOTAL COST EURO	NOTES / REMARKS
1	DIRECT MATERIAL	47,449,000	11,340,000	8,757,000	4,818,000	22,712,000	95,076,000	1) ESTIMATE IS BASED ON 4th QUARTER YEAR
2	CONSTRUCTION	29,420,000	6,581,000	4,848,000	3,042,000	20,487,000	64,378,000	2014 PRICE LEVEL
3	DIRECT FIELD COST	76,869,000	17,921,000	13,605,000	7,860,000	43,199,000	159,454,000	2) ESTIMATE ACCURACY : +35 -15% AACE CLASS IV
4	OTHER COSTS	2,071,000	530,000	442,000	215,000	1,435,000	4,693,000	
5	EPC SERVICES	12,750,000	2,692,000	2,120,000	1,120,000	7,571,000	26,253,000	
6	TOTAL INSTALLED COST	91,690,000	21,143,000	16,167,000	9,195,000	52,205,000	190,400,000	
7	PROJECT CONTINGENCY	18,338,000	4,229,000	3,234,000	1,839,000	10,441,000	38,081,000	BUSINESS CONFIDENTIAL
8	TOTAL PLANT COST (TPC)	110,028,000	25,372,000	19,401,000	11,034,000	62,646,000	228,481,000	

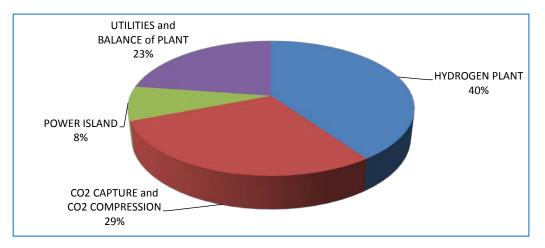

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant

December 2016

Sheet: 88 of 112

Image: Constraint of Standalone H2 Plant Image: Constraint of Standalone H2 Plant Case 2A - CO2 capture from PSA tail gas using MDEA								CONTRACT: 1-BD-0840A CLIENT: IEAGHG LOCATION: THE INETHERLANDS DATE: JUNE 2015 REV: 0
POS.	DESCRIPTION	HYDROGEN PLANT	CO2 CAPTURE	CO2 COMPRESSION	POWER ISLAND	UTILITIES and BALANCE of PLANT	TOTAL COST EURO	NOTES / REMARKS
1	DIRECT MATERIAL	40,677,000	22,470,000	8,165,000	4,772,000	19,443,000	95,527,000	1) ESTIMATE IS BASED ON 4th QUARTER YEAR
2	CONSTRUCTION	25,698,000	10,521,000	4,501,000	3,075,000	18,280,000	62,075,000	2014 PRICE LEVEL
3	DIRECT FIELD COST	66,375,000	32,991,000	12,666,000	7,847,000	37,723,000	157,602,000	2) ESTIMATE ACCURACY : +35 -15% AACE CLASS IV
4	OTHER COSTS	1,885,000	1,200,000	425,000	216,000	1,280,000	5,006,000	
5	EPC SERVICES	12,750,000	3,139,000	2,038,000	1,400,000	6,455,000	25,782,000	
6	TOTAL INSTALLED COST	81,010,000	37,330,000	15,129,000	9,463,000	45,458,000	188,390,000	
7	PROJECT CONTINGENCY	16,202,000	7,466,000	3,026,000	1,893,000	9,092,000	37,679,000	BUSINESS CONFIDENTIAL
8	TOTAL PLANT COST (TPC)	97,212,000	44,796,000	18,155,000	11,356,000	54,550,000	226,069,000	

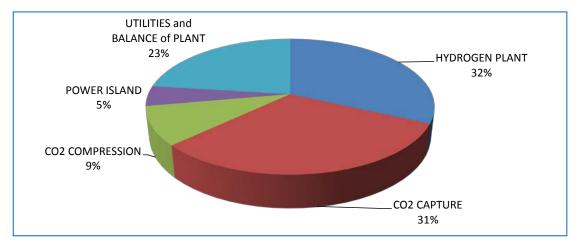

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H_2 Plant

December 2016

Sheet: 89 of 112

F	OSTER WHEELER	CONTRACT: 1-BD-0840A CLIENT: IEAGHG LOCATION: THE NETHERLANDS DATE: JUNE 2015 REV.: 0					
POS.	DESCRIPTION	HYDROGEN PLANT	CO2 CAPTURE and CO2 COMPRESSION	POWER ISLAND	UTILITIES and BALANCE of PLANT	TOTAL COST EURO	NOTES / REMARKS
1	DIRECT MATERIAL	40,677,000	31,792,000	8,534,000	19,394,000	100,397,000	1) ESTIMATE IS BASED ON 4th QUARTER YEAR
2	CONSTRUCTION	25,698,000	17,181,000	5,590,000	18,183,000	66,652,000	2014 PRICE LEVEL
3	DIRECT FIELD COST	66,375,000	48,973,000	14,124,000	37,577,000	167,049,000	2) ESTIMATE ACCURACY : +35 -15% AACE CLASS IV
4	OTHER COSTS	1,885,000	1,220,000	396,000	1,274,000	4,775,000	
5	EPC SERVICES	12,750,000	7,807,000	2,040,000	6,779,000	29,376,000	
6	TOTAL INSTALLED COST	81,010,000	58,000,000	16,560,000	45,630,000	201,200,000	
7	PROJECT CONTINGENCY	16,202,000	11,600,000	3,312,000	9,126,000	40,240,000	BUSINESS CONFIDENTIAL
8	TOTAL PLANT COST (TPC)	97,212,000	69,600,000	19,872,000	54,756,000	241,440,000	


Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant

December 2016

Sheet: 90 of 112

F	OSTER WHEELER		CONTRACT: 1-BD-0840A CLIENT: IEAGHG LOCATION: THE INFIHERLANDS DATE: JUNE 2015 REV: 0					
POS.	DESCRIPTION	HYDROGEN PLANT	CO2 CAPTURE	CO2 COMPRESSION	POWER ISLAND	UTILITIES and BALANCE of PLANT	TOTAL COST EURO	NOTES / REMARKS
1	DIRECT MATERIAL	40,677,000	42,933,000	13,341,000	6,366,000	25,808,000	129,125,000	1) ESTIMATE IS BASED ON 4th QUARTER YEAR
2	CONSTRUCTION	25,698,000	23,811,000	6,600,000	4,038,000	22,589,000	82,736,000	2014 PRICE LEVEL
3	DIRECT FIELD COST	66,375,000	66,744,000	19,941,000	10,404,000	48,397,000	211,861,000	2) ESTIMATE ACCURACY : +35 -15% AACE CLASS IV
4	OTHER COSTS	1,885,000	1,632,000	528,000	284,000	1,582,000	5,911,000	
5	EPC SERVICES	12,750,000	10,925,000	2,894,000	1,485,000	8,614,000	36,668,000	
6	TOTAL INSTALLED COST	81,010,000	79,301,000	23,363,000	12,173,000	58,593,000	254,440,000	
7	PROJECT CONTINGENCY	16,202,000	15,861,000	4,673,000	2,435,000	11,719,000	50,890,000	BUSINESS CONFIDENTIAL
8	TOTAL PLANT COST (TPC)	97,212,000	95,162,000	28,036,000	14,608,000	70,312,000	305,330,000	

Date:

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

December 2016 Sheet: 91 of 112

8.2. Annual Operating and Maintenance Cost

The definition of the Annual Operating and Maintenance (O&M) Cost is reported in the Reference Document (Task 2) – see Annex I of this report.

The succeeding sections summarised the estimated annual operating and maintenance costs for the different study cases. Generally, these are differentiated between:

- Variable cost;
- Fixed cost.

It should be noted that accurately distinguishing the allocation between the variable and fixed costs are not always feasible. Certain cost items may have both variable and fixed cost components; for example, the planned maintenance and inspection of the equipment such as steam turbine, SMR tubes, etc... are known to occur based on the number of running hours and should be allocated as variable components of the maintenance cost.

8.2.1. Variable Cost

Following tables presented in the succeeding pages summarise the variable costs for the different study cases. These include the following main cost items:

- Feedstock and fuel (natural gas)
- Raw water make-up
- Catalysts
- Chemicals.

The annual consumption of the various items reported are calculated using the overall mass and energy balances reported in this study based on the expected equivalent availability of the plant (i.e. 70% and 95% capacity factor for year 1 and year 2 to 25 respectively).

Reference prices used to estimate the cost of the consumables are summarized in the table below.

Item	Unit	Cost
Natural gas	€GJ (LHV)	6
Raw water	€m ³	0.20
Electricity (*)	€MWh	80
CO ₂ transport and storage	€t CO ₂ stored	10
CO ₂ emission cost	€t CO ₂ emitted	0

(*) Electricity selling/buying price for the electricity export or import.

Revision No.: FINAL

Date:

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant

December 2016

Sheet: 92 of 112

The following tables summarise the variable cost for the different study cases evaluated. Revenues relevant to the electricity selling price are also shown. For Case 2A, where power demand is higher than the power production, the cost related to the electricity import has been considered as an additional cost.

								Revision:		1
		Yearly Variable Costs					Date:		June 2015	
FOSTER	LER			rearly vari	able Cost	5		Issued by:		NF
								Approved by	y:	CG
Yearly Operating hours = 8322		Base case case 1A Hydrogen plant w/o capture CO2 capture from syngas using MDEA				•	•	3 gas using MDEA iring Burners		
Consumables	Unit Cost	Consum	ption	Operating Costs	Consum	ption	Operating Costs	Consun	nption	Operating Costs
		Hourly	Yearly		Hourly	Yearly		Hourly	Yearly	
	€/t	kg/h	t/y	€/у	kg/h	t/y	€/у	kg/h	t/y	€/γ
Feedstock + fuel										
Natural Gas	279.0	30,563	254,345	70,962,300	31,562	262,659	73,281,900	33,333	277,397	77,393,800
Auxiliary feedstock										
Raw make-up water	0.20	59,700	496,823	99,400	61,200	509,306	101,900	77,300	643,291	128,700
Chemicals	-	-	-	100,000	-	-	100,000	-	-	100,000
Catalysts	-	-	-	320,000			320,000			405,000
TOTAL YEARLY OPERATING COSTS	Euro/year			71,481,700			73,803,800			78,027,500
Revenues from electricity by-product	€/MWh	MWh	MWh/y	€/у	MWh	MWh/y	€/у	MWh	MWh/y	€/γ
Electricity selling price / cost	80	9.9	82,538	6,603,000	1.5	12,416	993,300	1.5	12,833	1,026,600

								Revision:		1
	Veerly Veriable Cente					Date:		June 2015		
FOSTER	DSTER Yearly Variable Costs			Issued by:		NF				
								Approved by	/ :	CG
Yearly Operating hours = 8322		CO2 Captu	case 2A ca CO2 Capture from PSA Tail Gas using MDEA Cryogenic and Mo			A Tail Gas using	CO2 Captur	case 3 e from Flue	Gas using MEA	
Consumables	Unit Cost	Consum	ption	Operating Costs	Consum	nption	Operating Costs	Consun	nption	Operating Costs
		Hourly	Yearly		Hourly	Yearly		Hourly	Yearly	
	€/t	kg/h	t/y	€/γ	kg/h	t/y	€/у	kg/h	t/y	€/γ
Feedstock + fuel										
Natural Gas	279.0	31,828	264,873	73,899,500	30,495	253,779	70,804,400	33,579	279,444	77,965,000
Auxiliary feedstock										
Raw make-up water	0.20	60,900	506,810	101,400	59,700	496,823	99,400	42,100	350,356	70,10
Chemicals	-	-	-	100,000	-	-	100,000	-	-	100,00
Catalysts	-	-	-	320,000	-	-	320,000	-	-	320,00
TOTAL YEARLY OPERATING COSTS	Euro/year			74,420,900			71,323,800			78,455,100
				. ,						
Revenues from electricity by-product	€/MWh	MWh	MWh/y	€/y (*)	MWh	MWh/y	€/у	MWh	MWh/y	€/γ
Electricity selling price / cost	80	-1.1	-8,905	-712,400	0.3	2,405	192,400	0.4	3,553	284,30

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

December 2016 Sheet: 93 of 112

8.2.2. Fixed Cost

The Fixed Cost include:

- Operating Labour Costs
- Overhead Charges
- Maintenance Costs
- Other Fixed Costs

Operating Labour Cost

The Hydrogen Plants without and with CCS for the different study cases can be virtually divided into the following main areas of operation:

- Hydrogen plant + utilities
- Additional operators required for the CO₂ capture and compression unit

The same division is reflected in the design of the centralized control room, which has the same number of main DCS control groups, each one equipped with a number of control stations, from where the operation of the units of each area is controlled.

The area responsible and his assistant supervise each area of operation; both are daily position. The shift superintendent and the electrical assistant are common for the different areas; both are also shift position. The rest of the operation staff is structured around the standard positions: shift supervisors, control room operators and field operators.

The maintenance personnel are based on the use of external subcontractors for all medium to major types of maintenance work. Maintenance cost takes into account the outsourcing services required. The plant maintenance personnel, like the instrument specialists, performs routine maintenance and resolve emergency problems.

The yearly cost of the direct labour is estimated by assuming an annual average cost for each individuals equal to 60,000 Euro/year (referred to year 2014).

The following tables presented in the succeeding page illustrate the breakdown of the labour force for the different configurations evaluated in this study and along with the total direct labour cost.

Overhead Charges

All other company services not directly involved in the operation of the plant fall into this category, such as:

- Management;
- Administration;

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

December 2016

Sheet: 94 of 112

- Personnel services;
- Technical services;
- Clerical staff.

These services could vary widely from company to company and are also dependent on the type and complexity of the operation. It is assumed that this cost is equal to 30% of the operating labour and maintenance labour cost.

Steam reformer							
	SR + utilities	TOTAL	Notes				
OPERATION							
Area Responsible	1	1	daily position				
Assistant Area Responsible	1	1	daily position				
Shift Superintendent	5	5	1 position per shift				
Electrical Assistant	5	5	1 position per shift				
Shift Supervisor	5	5	1 position per shift				
Control Room Operator	5	5	1 position per shift				
Field Operator	5	5	1 position per shift				
Subtotal		27					
MAINTENANCE							
Mechanical group	3	3	daily position				
Instrument group	3	3	daily position				
Electrical group	3	3	daily position				
Subtotal		9					
LABORATORY							
Superintendent+Analysts	2	2	daily position				
Subtotal		2					
TOTAL		38					
Cost for personnel							
Yearly individual average	je cost =	60,000	Euro/year				
Total cost =		2,280,000	Euro/year				

Revision No.: FINAL

 $Techno-Economic \ Evaluation \ of \ Standalone \ (Merchant) \ H_2 \ Plant \qquad Date:$

December 2016

Sheet: 95 of 112

Steam reformer + CO2 capture									
	SR + utilities	CO2 capture	TOTAL	Notes					
OPERATION									
Area Responsible	1		1	dailyposition					
Assistant Area Responsible	1		1	dailyposition					
Shift Superintendent		5	5	1 position per shift					
Electrical Assistant		5	5	1 position per shift					
Shift Supervisor		5	5	1 position per shift					
Control Room Operator	5	5	10	2 positions per shif					
Field Operator	5		5	1 position per shift					
Subtotal			32						
MAINTENANCE									
Mechanical group		3	3	daily position					
Instrument group		3	3	dailyposition					
Electrical group		3	3	dailyposition					
Subtotal			9						
LABORATORY									
Superintendent+Analysts		2	2	daily position					
Subtotal			2						
TOTAL			43						
Cost for personnel									
Yearly individual average	je cost =	60,000	Euro/year						
Total cost =		2,580,000	Euro/year						

Revision No.: FINAL Date: December 2016

Sheet: 96 of 112

Annual Maintenance Cost

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant

A precise evaluation of the cost of maintenance would require the breakdown of the cost amongst the numerous components and packages of the plant. Since these costs are all strongly dependent on the type of equipment selected and their corresponding statistical maintenance data provided by the selected vendors, this type of evaluation of the maintenance cost is considered pre-mature for this level of study.

For this reason, the annual maintenance cost of the plant is estimated as a percentage of the Total Plant Cost of each cases. 1.5% of the TPC is assumed and this generally applied to each individual processes and utility units.

In general, estimates can be separately expressed as maintenance labour and maintenance materials. The maintenance labour to materials ratio of 40:60 can be statistically considered for this breakdown.

The yearly maintenance cost for all the cases evaluated in this study is reported in the table below (this is estimated with reference to year 2014).

		Revision:	1				
		Date:	June 2015				
FOSTER	HEELER	Issued by:	NF				
		Approved by:	GC				
Maintenance Costs (2014)							
Case	Maintenance	TPC	Maintenance				
	%	€	€/year				
Base case	1,5	170.952.000	2.564.280				
Case 1A	1,5	201.804.000	3.027.060				
Case 1B	1,5	228.480.000	3.427.200				
Case 2A	1,5	226.068.000	3.391.020				
Case 2B	1,5	241.440.000	3.621.600				
Case 3	1,5	305.328.000	4.579.920				

Other Fixed Cost

The other fixed cost includes local taxes and fees, and insurance cost. This study assumed that the other fixed cost could be covered by 1% of the TPC.

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

December 2016

Sheet: 97 of 112

8.2.3. Summary of Results – Annual O&M Cost

The table below summarises the annual O&M cost for the different cases.

·		Revision	0	1	2	
FOSTER	Date	May-2015	Jun-2015	Dec-2016		
	lssued by:	NF	NF	SS		
		Approved by:	GC	GC	SS	
		ANNUAL C	D&M COST			
	Base Case	Case 1A	Case 1B	Case 2A	Case 2B	Case 3
	€/year	€/year	€/year	€/year	€/year	€/year
Fixed Costs						
Direct labour	2,280,000	2,580,000	2,580,000	2,580,000	2,580,000	2,580,000
Adm./gen. overheads	991,714	1,137,247	1,185,264	1,180,922	1,208,592	1,323,590
Insurance & local taxes	1,709,520	2,018,040	2,284,800	2,260,680	2,414,400	3,053,280
Maintenance	2,564,280	3,027,060	3,427,200	3,391,020	3,621,600	4,579,920
Sub-total	7,545,514	8,762,347	9,477,264	9,412,622	9,824,592	11,536,790
Variable Costs (Availability - 95%	6)					
Feedstock & fuel	70,965,387	73,281,851	77,393,826	73,899,460	70,804,450	77,962,676
Raw water (make-up)	99,365	101,861	128,658	101,362	99,365	70,071
Chemicals & catalysts	420,000	420,000	505,000	420,000	420,000	420,000
Sub-total	71,484,752	73,803,712	78,027,484	74,420,822	71,323,814	78,452,748
Total Fixed & Variable Cost	79,030,265	82,566,059	87,504,748	83,833,444	81,148,406	89,989,538
Other Revenues						
Electricity Export / Import	-6,603,008	-993,314	-1,026,602	712,363	-189,076	-283,614
Other Cost						
CO2 Transport & Storage	-	3,877,737	4,908,973	3,791,720	3,569,042	6,661,077
Annual O&M Cost	72,427,258	85,450,483	91,387,119	88,337,527	84,528,373	96,367,002

8.3. Estimating the Levelised Cost of Hydrogen (LCOH) & CO₂ Avoidance Cost (CAC)

8.3.1. Objective of the Economic Modelling

The economic modelling is a simplified financial analysis that estimates, for each cases, the Levelised Cost of Hydrogen (LCOH) and the CO₂ Avoidance Cost (CAC), based on specific macro-economic assumptions.

The method of calculation is based on a discounted cash flow analysis. This is similar to how the Levelized Cost of Electricity (LCOE) are calculated in other IEAGHG studies, except that it also takes into account the revenues from the sale of electricity as co-product.

The LCOH predictions are estimated by obtaining a zero Net Present Value (NPV) for the project, corresponding to an Internal Rate of Return (IRR) equal to the Discount Rate (DR).

FOSTER

IEAGHG	Revision No.	: FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 98 of 112

Therefore, the financial analysis is a high-level economical evaluation only, while the rigorous project profitability for the specific case is beyond the scope of the present study.

8.3.2. <u>Levelised Cost of Hydrogen (LCOH)</u>

The Cost of Hydrogen (COH) production is defined as the selling price at which hydrogen must be produced to reach the break even at the end of the plant lifetime for a targeted rate of return. However, for the purpose of screening the different technology alternatives, the levelised value of the cost of hydrogen (LCOH) is commonly preferred than the year-by-year data.

The Levelized Cost of Hydrogen (LCOH) is defined as the selling price of hydrogen which enables the present value from all sales of the product(s) over the economic lifetime of the plant to equal the present value of all costs of building, maintaining and operating the plant over its lifetime. In other word, the selling price of the product is calculated based on the assumption that NPV = 0 (over the whole life time of the plant).

In this type of analysis, the assumptions for the long-term inflation and the price/cost variations throughout the project life-time are not considered; therefore, the COH should be equal to the LCOH.

8.3.3. <u>CO₂ Avoidance Cost (CAC)</u>

The CO₂ Avoidance Cost (CAC) is calculated by comparing the costs and specific emissions of the plant with CCS with the cost and emissions of the reference case without CCS. For the hydrogen plant, it is defined as follows:

$$CO_{2} \text{ Avoidance Cost (CAC)} = \frac{LCOH_{CCS} - LCOH_{Reference}}{CO_{2} \text{Emissions }_{Reference} - CO_{2} \text{Emissions }_{CCS}}$$

where:

- Cost of CO₂ avoidance is expressed in Euro per ton of CO₂
- LCOH is expressed in Euro per Nm³ of H₂
- CO₂ emissions is expressed in tonnes of CO₂ per Nm³ of H₂
- The selected reference case for the evaluation of the CAC is the Base Case, i.e. the conventional hydrogen plant without capture.

8.3.4. <u>Macro-Economic Basis</u>

The economic assumptions and macro-economic basis are reported in the Reference Document (see Annex I) of the report.

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date: December 2016

Sheet: 99 of 112

These mainly include:

- Reference dates and construction period,
- Financial leverage,
- Capital expenditure curve,
- Discount rate,
- Spare parts cost,
- Start-up cost,
- Owner's cost,
- Interests during construction,
- Working capital,
- Insurance cost,
- Local taxes and fees,
- Decommissioning cost.

The principal financial basis assumed for the financial modelling are reported also hereafter for reader's convenience:

ITEMS	DATA
Type of feedstock and fuel	Natural Gas at 6 €GJ (LHV)
Discount Rate	8%
Capacity factor(*)	95%
EE selling price	80 €MWh
CO2 transport & storage cost	10 €t stored
CO ₂ emission cost	0 €t _{emitted}
Inflation Rate	Constant Euro
Currency (*) 70% Corposity factor is assu	Euro reported in 4Q2014

(*) 70% Capacity factor is assumed for Year 1.

Revision No.: FINAL Date: December 2016

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

Sheet: 100 of 112

8.3.5. <u>Summary of Results – Financial Analysis</u>

This section summarizes the results of the financial analysis performed for all the different cases of the study, based on the input data reported in the previous sections.

Table 3 reports the summary of the economical modelling results. Figure 1 and Figure 2 present the LCOH and CAC for all the study cases. The LCOH figures also show the relative weight of:

- Capital investment,
- Fixed O&M,
- Variable O&M
- Fuel,
- CO₂ transportation & storage.

For the cases with power export, the revenues from the electricity (EE) selling consequently reduces the LCOH. This effect is graphically shown in the LCOH figures starting from a negative value.

Case	Description	LCOH c€/Nm ³	CAC €t
Base Case	SMR w/o capture	11.4	-
Case 1A	CO ₂ Capture from shifted syngas using MDEA	13.5	47.1
Case 1B	CO ₂ capture from shifted syngas using MDEA with H ₂ Rich Fuel Firing Burners	14.6	62.0
Case 2A	CO ₂ Capture from PSA tail gas using MDEA	14.2	66.3
Case 2B	CO ₂ Capture from PSA tail gas using Cryogenic and Membrane Technology	14.0	59.5
Case 3	CO ₂ capture from flue gas using MEA	16.5	69.8

Table 3. Financial results summar	v: LCOH and	CO ₂ avoidance cost
Table 5. Financial results summar	y. LCOII and	CO2 avoluance cost

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

December 2016

Sheet: 101 of 112

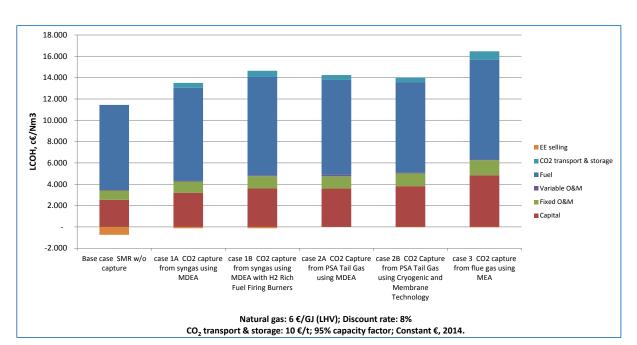


Figure 1. LCOH for the different study cases

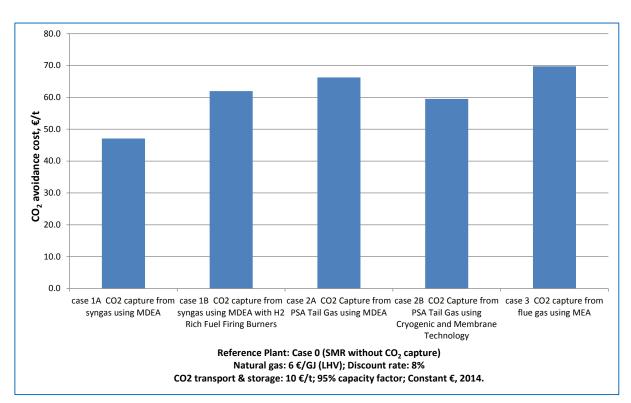


Figure 2. Cost of CO₂ avoidance for the study cases

Revision No.: FINAL

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date:

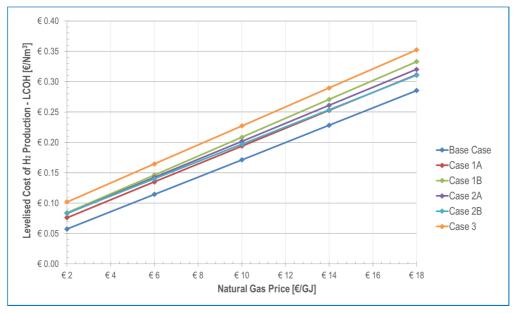
Sheet: 102 of 112

December 2016

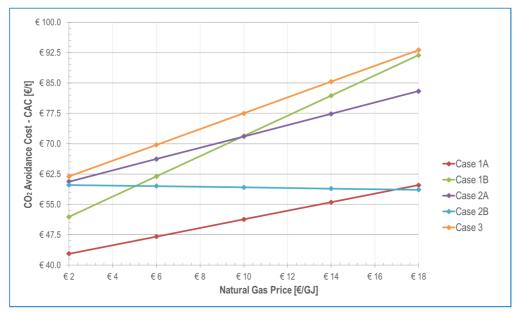
8.4. Cost Sensitivity to the Main Financial Parameters

This section summarizes the results of the sensitivity analyses performed to estimate the LCOH and the CO_2 Avoidance Cost of the different study cases, versus the variation of the following economical parameters:

- Natural gas cost,
- EE selling / buying price
- Discount rate,
- CO₂ transport & storage cost,
- CO₂ emission cost,
- Plant life (project duration).


The sensitivity range has been selected in accordance to the study requirement, of which the following table below represents a summary.

Sensitivity relevant to all cases				
Criteria	Unit	Base Number	Sensitivity Range	
Feedstock and fuel price	€GJ (LHV)	6	2 to 18	
EE selling / buying price	€MWh	80	20 to 100	
Discount rate	%	8	4 to 12	
CO ₂ transport & storage	€t stored	10	-20 to 40	
CO ₂ emission costs	€t emitted	0	0 to 100	
Plant life	years	25	25 to 40	


Revision No.: FINAL Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date: December 2016 Sheet: 103 of 112

8.4.1. Sensitivity to the Natural Gas Price

<u>LCOH</u>

Figure 3. LCOH sensitivity to the natural gas price

CO₂ avoidance cost

Figure 4. Cost of CO₂ avoidance sensitivity to natural gas price

IEAGHG	Revision No.: FINAL		
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016	
		Sheet: 104 of 112	

8.4.2. <u>Sensitivity to the Electricity (EE) Selling/Buying Price</u>

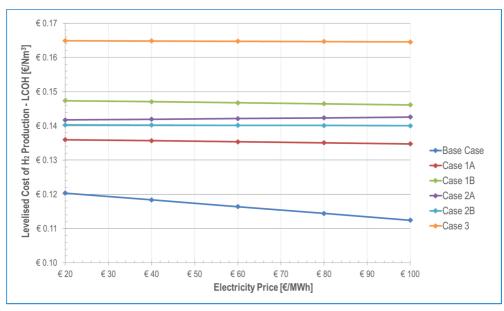
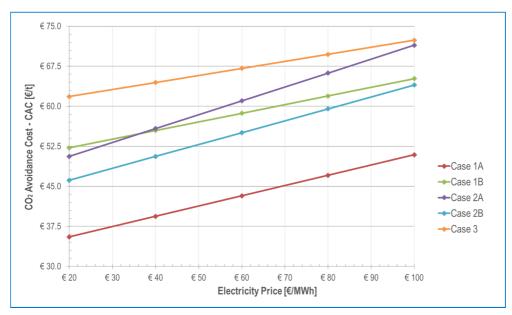



Figure 5. LCOH sensitivity to EE selling/buying price

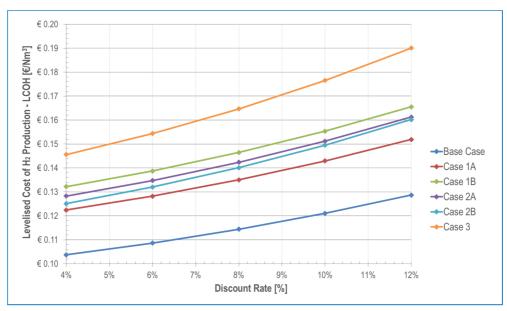
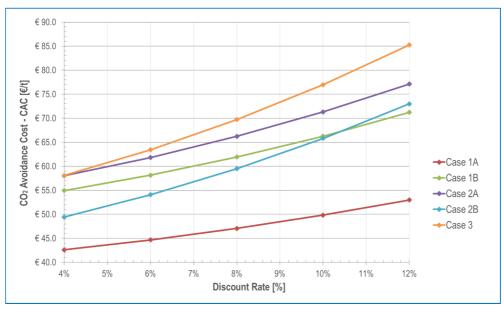

CO2 avoidance cost

Figure 6. Cost of CO₂ avoidance sensitivity to EE selling/buying price


Revision No.: FINAL Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant Date: December 2016 Sheet: 105 of 112

8.4.3. Sensitivity to the Discount Rate

<u>LCOH</u>

Figure 7. LCOH sensitivity to discount rate

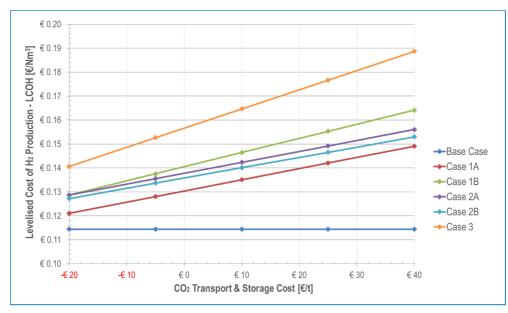
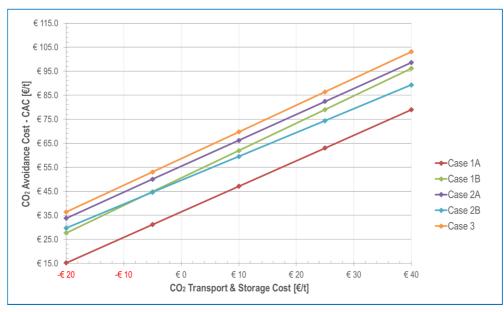

CO2 avoidance cost

Figure 8. Cost of CO₂ avoidance sensitivity to discount rate


Revision No.: FINAL Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant December 2016 Date: Sheet: 106 of 112

8.4.4. Sensitivity to the CO₂ Transport & Storage Cost

<u>LCOH</u>

Figure 9. LCOH sensitivity to CO₂ transport & storage cost

CO₂ avoidance cost

Figure 10. Cost of CO₂ avoidance sensitivity to CO₂ transport & storage cost

Note: Negative CO2 transport and storage cost could represent income received from CCS operation (i.e. EOR revenues, any incentives or tax credits from authorities)

Revision No.: FINAL Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant December 2016 Date: Sheet: 107 of 112

8.4.5. Sensitivity to the CO₂ Emissions Cost

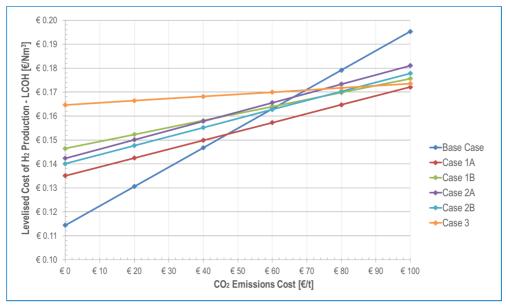


Figure 11. LCOH sensitivity to CO₂ emission cost

<u>CO2 avoidance cost</u>

The CO₂ avoidance cost is expected to be neutral with the variation of CO₂ emissions cost.

Nonetheless, it is important to note that the CAC should be equal to zero at the point in the xaxis (CO₂ emissions cost) where the LCOH of H₂ plant with CCS intersect with the LCOH of H₂ plant without CCS. The CO₂ emissions cost at the intersection point for each case should be equal to the CAC values reported in Table 3 – see Sheet 99.

IEAGHG	Revision No.	: FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 108 of 112

8.4.6. Cost Sensitivity to the Plant's Economic Life

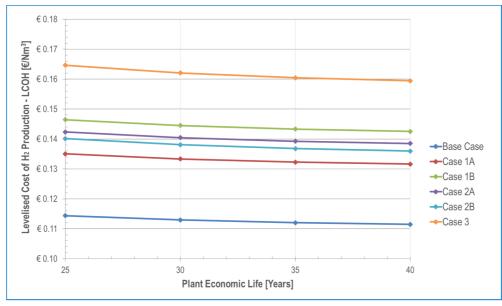
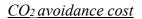



Figure 12. LCOH sensitivity to plant life

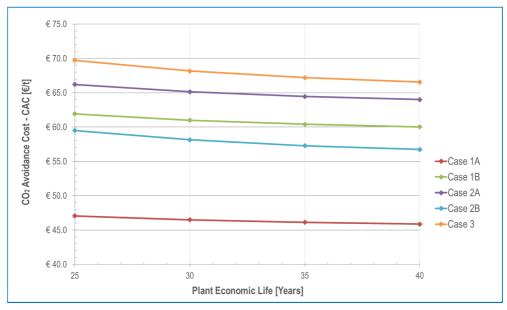


Figure 13. Cost of CO₂ avoidance sensitivity to plant life

IEAGHG	Revision No.	: FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 109 of 112

Annex I:

Reference Document (Task 2): Criteria for Assessing the Techno-Economic Evaluation of H₂ or HYCO Plant

FOSTER

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 1 of 24

CLIENT	:	IEA Greenhouse Gas R&D Programme (IEAGHG)
PROJECT NAME	:	Techno-Economic Evaluation of H ₂ Production with CO ₂ Capture
DOCUMENT NAME	:	Reference Document
FWI Contract	:	1BD0840A

ISSUED BY	:	G. Azzaro
CHECKED BY	:	G. COLLODI
APPROVED BY	:	G. COLLODI

DATE	REVISED PAGES	ISSUED BY	CHECKED BY	APPROVED BY

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 2 of 24

TABLE OF CONTENTS

1.	Intr	roduction4					
2.	Def	inition of the Reference Document					
	2.1.	Merchant Hydrogen Plant	5				
	2.2.	HYCO Plant or Syngas Generation Unit					
		2.2.1. Ammonia/Orea Froduction 2.2.2. Methanol Production					
3.	Gen	neral Data and Technical Assumptions					
	3.1.						
	3.2.	Climatic and Meteorological Data	8				
	3.3.	Feedstock Specification	9				
		3.3.1. Natural Gas	9				
	3.4.	Products and Co-Products					
		3.4.1. Hydrogen					
		3.4.2. Carbon Dioxide					
		3.4.3. HP Steam					
		3.4.4. Electric Power					
	3.5.						
		3.5.1. Gaseous Emissions					
		3.5.2. Liquid Effluent Discharge					
		3.5.3. Solid Wastes Disposal					
		3.5.4. Noise Pollution					
	3.6.	Key Features of the Hydrogen Production Plant					
		3.6.1. Capacity					
		3.6.2. Configuration 3.6.3. Plant Turndown					
	2 -						
	3.7.						
	3.8.						
	3.9.	Units of Measurement	15				
	3.10). Plant's Battery Limits	15				

FOSTER

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H ₂ Production with CO ₂ Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 3 of 24

	3.11	Utility	and Service Fluids Characteristics/Conditions	
		3.11.1.	Cooling Water	15
		3.11.2.	Air Cooling System	16
		3.11.3.	Demineralised Water (Demi-Water)	16
		3.11.4.	Steam Conditions	
		3.11.5.	Instrument and Plant Air Specifications	17
		3.11.6.	Nitrogen	17
		3.11.7.	Chemicals	18
	3.12	Codes	and Standards	
	3.13	. Softwa	re Codes	
4.	Crit	teria fo	r Economic Evaluation	19
	4.1.	Econor	mic Criteria	
		4.1.1.	Plant Economic Life	19
		4.1.2.	Project Schedule	19
		4.1.3.	Total Capital Requirement	19
		4.1.4.	Total Plant Cost	19
		4.1.5.	Estimate Accuracy	20
		4.1.6.	Contingency	20
		4.1.7.	Design and Construction Period	
		4.1.8.	Financial Leverage (Ration of Debt / Invested Capital)	20
		4.1.9.	Interests during Construction	20
		4.1.10.	Discount Rate	21
		4.1.11.	Inflation Rate	21
		4.1.12.	Depreciation	
		4.1.13.	Spare Parts Cost	
		4.1.14.	Start-Up Cost	
		4.1.15.	Owner's cost	
		4.1.16.	Working Capital	
		4.1.17.	Insurance Cost	
		4.1.18.	Local Taxes and Fees	
		4.1.19.	Decommissioning Cost	
	4.2.	Annua	l Operating and Maintenance Cost	
		4.2.1.	Variable Cost	
		4.2.2.	Fixed Cost	23

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 4 of 24

1. Introduction

In the past years, IEA Greenhouse Gas R&D Programme (IEAGHG) has issued a series of reports presenting the performance and cost of CO₂ capture technologies when applied to energy intensive industries and these include cement, iron and steel, pulp and paper, oil refining, co-production of power and hydrogen from coal.

In line with the commitment to support and understand any development and deployment of low carbon energy technologies, IEAGHG has contracted Amec Foster Wheeler (Amec FW) to perform a study aiming to investigate the deployment of CO_2 capture technologies in a hydrogen production unit operating as standalone (merchant) or integrated to an industrial complex.

Hydrogen is used as feedstock to various industries. This could be delivered as nearly pure H_2 or as HYCO gas. Currently, nearly 95% of hydrogen generated industrially is consumed by ammonia production, oil refineries and other chemical industries (i.e. basic chemicals, petrochemicals, oleo-chemicals etc...), and metal industries (i.e. direct iron reduction or DRI production).

Nearly 90% of the Hydrogen production from NG or other light hydrocarbon (HC) feedstock is produced from steam methane reforming (SMR). Other production routes include autothermal reforming (ATR) and partial oxidation (POX).

The leading technologies available for capturing CO₂ from H₂ plants include the use of chemical absorption technology (in post-combustion or pre-combustion options), cryogenic or low temperature separation technology, membrane, PSA and others.

This study mainly aims to evaluate performance and cost of capturing CO_2 from the shifted syngas, PSA tail gas or SMR's flue gas using chemical absorption technology (as applied to all the possible CO_2 capture schemes) or cryogenic and membrane separation technology (as applied to capturing of CO_2 from the PSA tail gas only).

One of the objectives of this study is aimed to develop a common methodology of assessing the techno-economics of H_2 production. As such, the scope of TASK 2 has been set to provide a "Reference Document" to serve as a good basis to develop the different assumptions (engineering and techno-economic parameters) that could be used in evaluating the levelised cost of H_2 production without and with CO₂ capture (for TASK 3); and the levelised cost of ammonia and methanol production without and with CO₂ capture (for TASK 4).

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 5 of 24

2. Definition of the Reference Document

The scope of the techno-economic assessment consists of the following:

- TASK 3 evaluating the performance and cost of deploying CCS in a standalone (merchant) H₂ plant.
- TASK 4 evaluating the performance and cost of deploying CCS in an SMR based HYCO plant integrated with ammonia/urea or methanol production complex.

The "Reference Document" describes the general plant design basis and cost estimating criteria which will be used as a common basis for the techno-economic evaluation of H_2 plant without and with CO_2 capture.

The design and economic criteria outlined in the following sections will be mainly used as a reference for developing the H_2 plant configurations (scope of TASK 3) to be analysed as part of the study.

Specific criteria for TASK 4 are presented in the final report of TASK 4, as applicable.

It should be noted that in TASK 4, additional CO_2 is specifically captured from the SMR's flue gas. For the ammonia case, part of the CO_2 captured from this source will be used to maximised the production of the urea.

Where relevant, information retrieved from IEAGHG document "Criteria for Technical and Economic Assessment of Plants with Low CO_2 Emissions" Version C-6, March 2014, are included.

2.1. Merchant Hydrogen Plant

For the scope of TASK 3, the plant scheme analysed in the study includes:

- Hydrogen Plant (with or without CO₂ capture) via SMR
- Cogen Plant
- Utility Plant

The hydrogen plant will produce H₂ as the main product and HP steam as co-product.

The HP steam will be used to fulfil power requirements of the H_2 Plant by driving a steam turbine (COGEN Plant).

Should the electricity produced within the plant not be sufficient to fulfil the H₂ plant needs, the following two options will be evaluated for supplying the additional power to the H₂ plant: (a.) power import from the grid, or (b.) power production inside the battery limit via gas fired boiler (to be confirmed over the course of the work).

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 6 of 24

2.2. HYCO Plant or Syngas Generation Unit

For the scope of TASK 4, the plant scheme analysed in the study includes:

- Primary reformer
- Secondary reformer
- Associated syngas processing units
- Ammonia/urea or methanol synthesis plant

For the plants without CO₂ capture, the HP and MP steam produced in the syngas generation section and the synthesis section are mainly used to drive various turbo-machineries.

The electricity required by the plants without and with CCS are imported from the grid. The indirect CO_2 emission from the electricity will be accounted for by assuming that electricity is coming from an NGCC or USCPC power plants (without CCS).¹

2.2.1. <u>Ammonia/Urea Production</u>

The HYCO plant for the ammonia/urea production consists of the SMR based primary reformer in tandem with the air blown autothermal reformer to produce a raw syngas (containing mainly CO₂, CO, CH₄, H₂ and N₂).

The raw syngas is then processed in the following units:

- Syngas cooling
- High and low temperature shift reactors
- Bulk CO₂ removal unit
- Methanation reactor
- Syngas compressor

This produces the product syngas (mainly containing H_2 , N_2 with small amount of CH_4) used in the ammonia synthesis plant. The ammonia is then fed into the urea synthesis plant together with the CO_2 from the bulk removal unit.

The ammonia/urea plant produces granulated urea as the main product with chilled ammonia as co-product (for the Base Case only).

¹ CO₂ emissions from the NGCC or USCPC will be based on the information from previous IEAGHG studies:

[•] IEAGHG Report No. 2014-03 "CO2 Capture at Coal Based Power and Hydrogen Plant"

[•] IEAGHG Report No. 2015-05 "Oxy-Combustion Turbine Power Plants"

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 7 of 24

2.2.2. <u>Methanol Production</u>

The HYCO plant for the methanol production consists of the SMR based primary reformer in tandem with the oxygen blown autothermal reformer to produce a raw syngas (containing mainly CO₂, CO, CH₄, and H₂).

The raw syngas is then processed in the following units:

- Syngas cooling
- Syngas compressor

This product syngas (mainly containing CO₂, CO, H₂ with small amount of CH₄) is used as the make-up gas or MUG of the methanol synthesis plant.

The methanol plant only produces AA grade methanol as the main product.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 8 of 24

3. General Data and Technical Assumptions

This section summarizes the general plant design criteria and assumptions used as a common basis for the design of the SMR based H₂ or HYCO plant with and without CO₂ capture.

3.1. Plant Location

The plant is situated at a greenfield site located at the North East coast of The Netherlands, with no major site preparation required. There will be no restrictions on plant area and no special civil works or constraints on the delivery of equipment are assumed. Rail lines, roads, fresh water supply and high voltage electricity transmission lines, high pressure natural gas pipeline are considered available at plant battery limits.

3.2. Climatic and Meteorological Data

Main climatic and meteorological data are listed below. Conditions marked (*) are considered reference conditions for the plant performance evaluation.

•	Atmos	spheric pressure	101.3 kPa	(*)
•	0 0	ve humidity Average Maximum Minimum	80% (*) 95% 40%	
•	Ambie o o	ent temperatures minimum air temperature maximum air temperature average air temperature	-10°C 30°C 9°C (*)	

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 9 of 24

3.3. Feedstock Specification

3.3.1. Natural Gas

Natural gas is used as the main feedstock and fuel to the H_2 or HYCO plant and delivered to the plant battery limits from a high pressure pipeline.

The specifications of the natural gas are shown in the table below.

Natural Gas Analysis (vol9	%)	
Methane		89.0
Ethane		7.0
Propane		1.0
Butane		0.1
Pentane		0.01
Carbon Dioxide		2.0
Nitrogen		0.89
Sulphur (as H ₂ S)		5 ppmv*
	Total	100.00

Table 1. Natural Gas Specifications

HHV (MJ/kg)	51.473
LHV (MJ/kg)	46.502

	Conditions at plant B.L.	
Pressure, MPa	7.	0

 $*5 \text{ ppm}_v$ of H_2S are assumed to be present in the natural gas for design purposes

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 10 of 24

3.4. Products and Co-Products

The main products and co-products of the Hydrogen Plant analysed in TASK 3 of this study are listed in this section, together with their main specifications.

The main products of the Ammonia/Urea and Methanol Plants analysed in this study are presented in the TASK 4 final report.

3.4.1. <u>Hydrogen</u>

The specification for the hydrogen used in the analysis are presented in Table 2.

The syngas or HYCO gas used in the ammonia or methanol synthesis are specified in the TASK 4 report. The pressure at the B.L. of the Syngas Generation Section is dependent on the requirement of the industrial complex.

H ₂	99.5% v (min.)
$CO + CO_2$	10 ppm (max.)
СО	10 ppm (max.)
H ₂ S, HCl, COS, HCN, NH ₃	Free
$N_2 + Ar$	Balance

Table 2. Hydrogen Specifications	Table 2.	Hydrogen	Specifications
----------------------------------	----------	----------	----------------

LHV	119.96 MJ/kg
HHV	141.88 MJ/kg

Pressure at B.L.*	2.5 MPa
Temperature at B.L.	40°C

* This is the pressure at the B.L. (to be assumed for TASK 3 evaluation).

It should be noted that this is the pressure of the H₂ product from the PSA (i.e. without any H₂ compressor)

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 11 of 24

3.4.2. Carbon Dioxide

The specifications of the CO_2 as delivered from the plant's B.L. to the pipeline are presented Table 3.

Maximum allowable impurities in the product CO_2 ⁽¹⁾		
H ₂	4% (2,4)	
$N_2 + Ar$	4% ^(3,4)	
O ₂ ⁽⁵⁾	100 ppm ^(4,6)	
СО	0.2% (7)	
H_2S	20 ppm ⁽⁸⁾	
H ₂ O	50 ppm ⁽⁹⁾	

Table 3. Product CO₂ Specifications

Pressure at B.L.*	11 MPa
Temperature at B.L.	30°C

- ⁽¹⁾ Based on information available in 2012 on the requirements for CO₂ transportation and storage in saline aquifers
- ⁽²⁾ Hydrogen concentration to be normally lower to limit loss of energy and economic value. Further investigation is required to understand hydrogen impact on supercritical CO₂ behaviour.
- ⁽³⁾ The limit on concentrations of inerts are to reduce the volume for compression, transport and storage and limit the increase in Minimum Miscibility Pressure (MMP) in Enhanced Oil Recovery (EOR).
- ⁽⁴⁾ Total non-condensable content $(N_2 + O_2 + H_2 + CH_4 + Ar)$: maximum 4% vol. basis. This is based on the recommendations reported in the ENCAP Project (http://www.encapCO2.org)
- ⁽⁵⁾ Oxygen content should be specified in conjunction with water content to limit corrosion in the downstream infrastructure.
- ⁽⁶⁾ Oxygen limit is considered tentative due to the lack of practical experience on the operation of the CO₂ storage infrastructure. It is expected that stringent limit will be in place for EOR operation.
- ⁽⁷⁾ CO limits are set from a health and safety perspective.
- $^{(8)}$ H₂S specification should be specified in conjunction with water content to limit corrosion in the downstream infrastructure.
- ⁽⁹⁾ Water specification is to ensure there is no free water and hydrate formation.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 12 of 24

3.4.3. <u>HP Steam</u>

Refer to Section 3.11.4

3.4.4. <u>Electric Power</u>

High voltage grid connection:380 kVFrequency:50 Hz

3.5. Environmental Limits

The environmental limits set up for each cases are outlined in this section.

3.5.1. Gaseous Emissions

The overall gaseous emissions from the plant should not exceed the following limits:

NO _x (as NO ₂)*	$\leq 120 \text{ mg/Nm}^3$
SO_x (as SO_2)*	N.A.**
СО	\leq 30 mg/Nm ³

* Emission expressed in mg/Nm³ @ 3% O₂, dry basis.

** SOx will be very minimal – given that the PSA tail gas is expected to be sulphur free and NG as supplementary fuel contains only less than 5 ppm_v.

3.5.2. Liquid Effluent Discharge

Characteristics of waste water discharged from the plant should comply with the standard limits required by the EU directives currently in force.

The main liquid effluent that continuously flows out of the B.L. is coming from the blow-down of the steam drum (in the Deaerator section of the BFW system).

Sea water used in the primary cooling system is returned to the sea with allowable maximum temperature increase of 7°C.

3.5.3. Solid Wastes Disposal

Solid wastes from the Hydrogen Plant consists of the spent catalysts. All solid wastes will be handled in accordance to the instruction and guidelines provided by the catalyst vendors and the plant owner's established procedure.

The spent catalysts collected from the plant are in their oxidized/inert state; as such, these are considered non-hazardous.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 13 of 24

The reformer's and pre-reformer's catalyst contains nickel, which can often be recovered. The other spent catalyst would normally be disposed of in the landfill.

3.5.4. Noise Pollution

All the equipment of the plant are designed to obtain a sound pressure level of 85 dB(A) at 1 meter from the equipment.

3.6. Key Features of the Hydrogen Production Plant

This key features of the SMR based Hydrogen Plant considered for TASK 3 are presented in this section of the report.

The key features of the Syngas Generation or HYCO plant considered for the ammonia and methanol production are specified in the Final Report of TASK 4.

3.6.1. <u>Capacity</u>

The plant capacity is assumed contact for all cases producing 100,000 Nm³/h of high purity Hydrogen.

3.6.2. Configuration

The hydrogen production plant consists of one train and integrates the following sections:

- Feed Pre-treatment
- Pre-reforming
- Primary Reforming
- Water Gas Shift Conversion
- Final Hydrogen Purification (based on PSA)
- Steam and BFW System
- CO₂ Capture System (only for CO₂ capture cases)
- CO2 Compression and Dehydration (only for CO₂ capture cases)

3.6.3. Plant Turndown

The minimum turndown of the hydrogen plant considered in this study is assumed at 40%.

For TASK 4, the minimum turndown is dependent on the chemical complex it is integrated with.. However, it is expected that high availability is required for the syngas or HYCO production to meet the demand of the chemical production operation. Nonetheless, in typical normal operation, 40% turn down for the SMR should be necessary during start-up or upset within the chemical complex (hence reducing natural gas consumption during these events).

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 14 of 24

3.7. Capacity Factor

The table below presents the expected capacity factor (average yearly capacity factor) of the hydrogen plant evaluated in TASK 3.

Plant	Year	Average capacity factor
II. Droduction	1 st year of operation	70%
H ₂ Production	$2^{nd} - 25^{th}$ year of operation	95%

The capacity factor of 90% will be assumed for the ammonia/urea and methanol production complex evaluated in TASK 4.

3.8. Process and Utility Units

This section summarised the different unit processes and utilities included in the B.L. of the hydrogen plant considered for TASK 3.

Process Units

- Feed Pre-treatment
- Pre-reforming
- Primary Reforming
- Water Gas Shift conversion
- Final Hydrogen purification (PSA)
- Steam and BFW system
- CO₂ capture system (only for CO₂ capture cases)
- CO₂ compression (only for CO₂ capture cases)

Utilities and Offsite Units

- Cooling water
- Demineralised, Condensate recovery Water Systems
- Plant/Instrument Air Systems
- Inert gas System
- Fire Fighting System
- COGEN Plant (import/export, depending on cogeneration option considered)
- Chemicals
- Flare system
- Interconnecting

The different unit processes and utilities of the ammonia/urea and methanol production complex are presented in the Final Report of TASK 4.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 15 of 24

3.9. Units of Measurement

The units of measurement used in this study are in SI units.

3.10. Plant's Battery Limits

The plant's battery limits are defined in the Final Report of TASK 3 and TASK 4.

3.11. Utility and Service Fluids Characteristics/Conditions

The following sections present the main utilities and service fluids used within the hydrogen or HYCO plant.

3.11.1. Cooling Water

The cooling water system is based on once through seawater cooling for the primary system and close circuit demi-water cooling for the secondary system.

<u>Primary System – Seawater Cooling Specifications</u>

Source	:	sea water in once through system
Service	:	for steam turbine condenser and CO2 compression unit.
Туре	:	clear filtered and chlorinated, without suspended solids and organic matter.
Salinity	:	22 g/l

Supply temperature:

- average supply temperature (on yearly basis):	12°C
- max supply temperature (average summer):	14°C
- min. supply temperature (average winter):	9°C
- max. allowable seawater temperature increase:	7°C
Detum temperature	
Return temperature:	
- average return temperature:	19°C
- max return temperature:	21°C
Design temperature:	50°C
Operating pressure at condenser inlet:	0.05 MPa(g)
Design pressure:	0.4 MPa(g)
Max allowable ΔP for Users:	0.05MPa(g)
Turbine condenser minimum ΔT :	5°C*
Turbine condenser conditions	
- Temperature	28°C*
- Pressure	0.0038 MPa*

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 16 of 24

Secondary System: Closed Circuit Demineralised Water (Demi-Water) Cooling

Source	:	demineralised water stabilized & conditioned – seawater cooled			
Service	:	for machinery cooling and for all plant users other than steam turbine			
	condenser and CO ₂ compression exchangers				

Supply temperature:

-	average supply temperature	19°C
-	max. supply temperature:	21°C
-	max. allowable temperature increase:	11°C
Design t	emperature:	50 °C
Operatir	ng pressure at Users:	0.3 MPa(g)
Design pressure:		0.7 MPa(g)
Max. all	owable ΔP for Users:	0.15 MPa(g)

3.11.2. Air Cooling System

Air temperature to be considered for the air cooler design is set at 25 °C.

3.11.3. <u>Demineralised Water (Demi-Water)</u>

Type:	T	reated raw water		
Operating pressure at grade (min):	0.	5 MPa(g)		
Design pressure:	0.	0.95 MPa(g)		
Operating temperature:	А	Ambient		
Design temperature:	38	3°C		
Specifications:				
- pH		6.5÷7.0		
- Total dissolved solids	mg/kg	0.1 max		
- Conductance at 25°C	μS	0.15 max		
- Iron	mg/kg as Fe	0.01 max		
- Free CO ₂	mg/kg as CO ₂	0.01 max		
- Silica	mg/kg as SiO2	2 0.015 max		

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 17 of 24

3.11.4. Steam Conditions

The conditions for the HP and LP steam used in the evaluation for the Hydrogen Plant in TASK 3 are summarised below.

Steam	Pressure - MPa(g)				Temperature - °C			
(at Process Unit's B.L.)	min	normal	max	design	min	normal	max	design
HP Steam	3.92	4.13	4.21	4.68/FV	375	395	405	425
LP Steam	0.31	0.34	0.37	0.63/FV	150	177	180	210

Table 4. Steam Conditions used by the Process Units

The conditions for the HP, MP and LP steam used in the evaluation for the Ammonia/Urea and the Methanol Production Complex are presented in the Final Report of TASK 4.

3.11.5. Instrument and Plant Air Specifications

Instrument Air

Operating pressure						
- normal:	0.7 MPa(g)					
- minimum:	0.5 MPa(g)					
Design pressure:	1 MPa(g)					
Operating temperature (max):	40°C					
Design temperature:	60°C					
Dew point @ 0.7 MPa(g):	-30°C					

<u>Plant Air</u>

Operating pressure:	0.7 MPa(g)
Design pressure:	1MPa(g)
Operating temperature (max):	40°C
Design temperature:	60°C

3.11.6. <u>Nitrogen</u>

Low Pressure	Nitrogen
Supply pressure:	0.65 MPa(g)
Design pressure:	1.15 MPa(g)
Supply temperature (min):	15°C
Design temperature:	70°C
Min Nitrogen Purity:	99.9 % vol. (instrument grade)

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 18 of 24

3.11.7. <u>Chemicals</u>

The chemicals used in the Hydrogen (TASK 3) or HYCO (TASK 4) generally consists of the additives used in treating boiler feed water and condensates. For example:

- Oxygen scavenger: Nalco Elimin-OX 100%, or equivalent,
- Phosphate injection: Water solution with 50% Na₂HPO₄ and
- pH control injection: Morpholine (100%)

Design pressure: atmospheric pressure plus full tank of liquid solution Design temperature: 80°C

3.12. Codes and Standards

The design of the process and utility units are in general accordance with the main International and EU Standard Codes.

3.13. Software Codes

For the design of the plant, three software codes have been mainly used to evaluate the heat and mass balances of the different study cases:

- PROMAX v3.2 (by Bryan Research & Engineering Inc.): Simulation of the CO₂ capture from the shifted syngas, PSA tail gas or SMR's flue gas using amine sweetening process.
- Aspen HYSYS v7.3 (by AspenTech): Simulation of the SMR based hydrogen or HYCO plant and the CO₂ compression and dehydration unit.
- Gate Cycle v6.1 (by General Electric): Simulation of the Power Island used by the Steam Turbine and the Preheating Line of the condensate and BFW.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H ₂ Production with CO ₂ Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 19 of 24

4. Criteria for Economic Evaluation

The following sections describe the main bases in estimating the cost or criteria used in the economic assessment of the H_2 or HYCO plants (without and with CO_2 capture).

4.1. Economic Criteria

4.1.1. Plant Economic Life

The plant is designed for 25 years life.

4.1.2. Project Schedule

Project start		2016
Plant operation start		2019
Investment phase duration	(years)	3
Plant operating life	(years)	25
Plant operation end		2043

4.1.3. Total Capital Requirement

The Total Capital Requirement (TCR) includes:

- Total Plant Cost (TPC)
- Spare parts cost
- Start-up costs
- Owner's costs.
- Interest during construction
- Working capital

The estimates are quoted in euros (€), based on 4Q 2014 price level.

4.1.4. Total Plant Cost

The Total Plant Cost (TPC) is the installed cost of the plant including contingencies. The estimates are broken down into the main process units and, for each cases and further split into the following items:

- Direct materials
- Construction
- EPC services
- Other costs
- Contingency

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 20 of 24

4.1.5. Estimate Accuracy

The accuracy of the estimates are in the range of +35%/-15% (which in accordance to AACE Class 4 specification).

4.1.6. Contingency

The project contingency is added to the capital cost to give a 50% probability of a cost overrun or under-run.

For the accuracy considered in this study, 20% of the TPC is assumed for all the different units of the plant.

4.1.7. Design and Construction Period

Plant design and construction period and the curve of capital expenditure during construction are defined as follows:

• Construction period⁽¹⁾ 3 years

• Capital Expenditure Curve

Year	Investment Cost %
1	20
2	45
3	35

⁽¹⁾ Note: Starting from issuance of the "Notice to Proceed" to the EPC contractor

4.1.8. Financial Leverage (Ration of Debt / Invested Capital)

All the capital requirements are treated as debt, i.e. the financial leverage equal to 100%.

4.1.9. Interests during Construction

Interest during construction is calculated from the plant construction schedule and interest rate is assumed same as the discount rate.

Expenditure is assumed to take place at the end of each year and interest during construction payable in a year is calculated based on money owed at the end of the previous year.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 21 of 24

4.1.10. Discount Rate

The analysis is based on Discounted Cash Flow analysis. The discount rate of 8% is assumed.

4.1.11. Inflation Rate

Not considered. Real constant money is assumed in all the calculation.

4.1.12. Depreciation

Not considered. The results are reported on the Earnings Before Interest, Taxes, Depreciation and Amortisaton (EBITDA) basis.

4.1.13. <u>Spare Parts Cost</u>

0.5% of the TPC is assumed to cover spare part costs. It is assumed that spare parts have no value at the end of the plant life due to obsolescence.

4.1.14. <u>Start-Up Cost</u>

Start-Up cost consists of:

- 2% of the TPC, to cover modifications to equipment that needed to bring the unit up to full capacity.
- 25% of the full capacity feedstock and fuel cost for one month, to cover any inefficient operation that occurs during the start-up period.
- Three months of operating labour and indirect labour cost and the maintenance labour cost, to include training.
- One month of chemicals (including solvent for CO₂ capture if applicable), catalysts, and waste disposal costs and the maintenance materials cost.

4.1.15. <u>Owner's cost</u>

7% of the TPC is assumed to cover the Owner's cost and fees.

The Owner's cost covers the expenditure related to the feasibility studies, land surveys, land purchase, construction or improvement to roads and railways, water supply, other infrastructures, etc... beyond the site boundary, owner's engineering staff costs, permitting and legal fees, arranging financing and other miscellaneous costs.

The Owner's costs are assumed to incur in the first year of construction, allowing for the fact that some of the costs would be incurred before the start of construction.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 22 of 24

4.1.16. Working Capital

Working capital includes inventories of fuel and chemicals (materials held in storage outside of the process plants). Storage for 30 days at full load is considered for chemicals and consumables.

It is assumed that cost of these materials is recovered at the end of the plant life.

The study also assumed a zero balance for both Trade Debtors and Trade Creditors.

4.1.17. Insurance Cost

0.5% of the TPC is assumed to cover the plant's insurance cost.

4.1.18. Local Taxes and Fees

Another 0.5% of the TPC is assumed to cover the local taxes and fees.

4.1.19. Decommissioning Cost

The salvage value of equipment and materials is normally assumed to be equal to the costs of dismantling and site restoration, resulting in a zero net cost of decommissioning.

4.2. Annual Operating and Maintenance Cost

Operating and Maintenance (O&M) costs include:

- Feedstock
- Fuel
- Chemicals
- Catalysts
- Solvents
- Raw water make-up
- Direct operating labour
- Maintenance
- Overhead Charges.

The annual O&M costs are generally classified as variable and fixed costs.

<u>Variable cost</u> depends on the annual operating hour of the plant; and the <u>fixed operating costs</u> are essentially independent from the plant operating load. They can be expressed as \notin y.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 23 of 24

4.2.1. Variable Cost

Consumables are the principal components of variable O&M cost. These include feedstock, water, catalysts (Feedstock Purification catalyst, Pre-reforming catalyst, Steam Reformer Catalyst and Shift Catalyst), chemicals, solid waste disposal and others.

Reference values for Natural gas and main consumables prices are summarised in the table below.

Item	Cost
Natural Gas €GJ (LHV)	6
Raw process water, €m ³	0.2
Electric power, €MWh	80
CO ₂ transport and storage, €t CO ₂ stored ⁽¹⁾	10
CO ₂ emission cost, €t CO ₂ emitted	0

⁽¹⁾ Transport and storage cost as specified by IEAGHG, in accordance with the range of costs information in the European Zero Emissions platform's report "The costs of CO₂ capture, transport and storage", published in 2009. Sensitivity to transport and storage costs are assessed to cover lower or negative cost for EOR, due to the revenue for sale of CO₂, or higher cost, in case of off shore storage with long transport distances.

4.2.2. Fixed Cost

The fixed cost of the different plants include the following items:

Direct Labour

The yearly cost of the direct labour is calculated assuming, for each individual, an average cost equal to $60,000 \notin y$. The number of personnel engaged is estimated for each plant type, considering a 5 shift working pattern.

Administrative and Support Labour

All other company services not directly involved in the operation of the plant fall in this category, such as:

- Management
- Administration
- Personnel services
- Technical services
- Clerical staff.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of H2 Production with CO2 Capture	Date:	December 2016
Reference Document (Task 2)		Sheet: 24 of 24

These services vary widely from company to company and are also dependent on the type and complexity of the operation.

Administrative and support labour is assumed to be 30% of the direct labour and the maintenance labour cost (see below).

Annual Maintenance Cost

A precise evaluation of the cost of maintenance would require a breakdown of the costs amongst the numerous components and packages of the plant. Since these costs are all strongly dependent on the type of equipment selected and statistical maintenance data provided by the selected supplier, this type of evaluation of the maintenance cost is premature at study level.

For this reason the annual maintenance cost of the plant is normally estimated as a percentage of the total plant cost of the facilities, as shown in the following:

• Whole Plant 1.5% of TPC

Maintenance labour is assumed to be 40% of the overall maintenance cost.

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 110 of 112

Annex II:

Annual Cash Flow

- Base Case: SMR Based Hydrogen Plant without CO₂ Capture
- Case 1A: Hydrogen Plant with CO₂ Capture from Shifted Syngas using MDEA
- Case 1B: Hydrogen Plant with H₂ rich fuel firing burners and CO₂ Capture from Shifted Syngas using MDEA
- Case 2A: Hydrogen Plant with CO₂ Capture from PSA Tail Gas using MDEA
- Case 2B: Hydrogen Plant with CO₂ Capture using Cryogenic and Membrane Separation Technology
- Case 3: Hydrogen Plant with CO₂ Capture from SMR's Flue Gas using MEA

Cash Flow (€Million) - EBITDA Basis Techno-Econoic Evaluation of Deploying CCS in an SMR Based H2 Production using NG as Feedstock & Fuel Base Case

5450 0450																													
eriod	-3	-2	-1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Sales				75.02	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	
Selling and Distribution Expenses																													
et Sales Revenue				75.02	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	101.82	
Variable Costs CO2 Emission Tax CO2 Transport & Storage				-52.78	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	-71.48	
ross Margin				22.24	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	
Fixed Costs				-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	-7.55	
let Margin				14.70	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	
Residual Value - Capital Expenditure																													
Capital Expenditure	-46.33	-81.34	-77.36	-17.82																									
Working Capital				-0.04	0.01																								0.
Recurring Capital																													
BITDA (€ Million)	-46.33	-81.34	-77.36	-3.16	22.80	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	22.79	0.
Internal Rate of Return (IRR)	8.00%																												
Discount Rate	8.00%																												
Net Present Value (NPV) - €Million	€0.00																												
Levelised Cost of Hydrogen	€0.1144																												

Cash Flow (€Million) - EBITDA Basis Techno-Econoic Evaluation of Deploying CCS in an SMR Based H2 Production using NG as Feedstock & Fuel Case 1A - CO2 Capture from Shifted Syngas using MDEA

Period	-3	-2	-1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Sales				83.55	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	
Selling and Distribution Expenses																													
let Sales Revenue				83.55	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	113.40	
Variable Costs CO2 Emission Tax				-54.49	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	-73.80	
CO2 Emission Tax CO2 Transport & Storage Cost				-2.86	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	-3.88	
Gross Margin				26.21	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	
Fixed Costs				-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	-8.76	
let Margin				17.44	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	
Residual Value - Capital Expenditure																													
Capital Expenditure	-54.69	-96.02	-91.14	-21.02																									
Working Capital				-1.04	0.01																								1.0
Recurring Capital																													
BITDA (€ Million)	-54.69	-96.02	-91.14	-4.61	26.97	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	26.95	1.0-
Internal Rate of Return (IRR)	8.00%																												
Discount Rate	8.00%																												
Net Present Value (NPV) - €Million	(€0.0000)																												
	€0.1351																												

Cash Flow (€Million) - EBITDA Basis Techno-Econoic Evaluation of Deploying CCS in an SMR Based H2 Production using NG as Feedstock & Fuel Case 1B - H2 Rich Fired SMR and CO2 Capture from Shifted Syngas using MDEA

Period	-3	-2	-1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Sales				90.56	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	
Selling and Distribution Expenses																													
Vet Sales Revenue				90.56	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	122.91	
Variable Costs CO2 Emission Tax				-57.63	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	-78.03	
CO2 Transport and Storage Cost				-3.62	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	-4.91	
Gross Margin				29.32	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	
Fixed Costs				-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	-9.48	
Net Margin				19.84	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	
Residual Value - Capital Expenditure																													
Capital Expenditure	-61.92	-108.71	-102.96	-23.78																									
Working Capital				-1.31	0.02																								1.31
Recurring Capital																													
EBITDA (€ Million)	-61.92	-108.71	-102.96	-5.25	30.51	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	30.49	1.31
Internal Rate of Return (IRR)	8.00%																												
Discount Rate	8.00%																												
Net Present Value (NPV) - €Million	(€0.0000)																												
Levelised Cost of Hydrogen	€0.1465																												

Cash Flow (€Million) - EBITDA Basis Techno-Econoic Evaluation of Deploying CCS in an SMR Based H2 Production using NG as Feedstock & Fuel Case 2A - CO2 Capture from PSA Tail Gas using MDEA

Period	-3	-2	-1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Sales				86.78	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	
Selling and Distribution Expenses																													
Vet Sales Revenue				86.78	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	117.77	
Variable Costs CO2 Emission Tax				-54.95	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	-74.42	
CO2 Emission Tax CO2 Transport and Storage				-2.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	-3.79	
Gross Margin				29.04	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	39.56	
Fixed Costs				-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	-9.41	
Net Margin				19.62	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	
Residual Value - Capital Expenditure																													
Capital Expenditure	-61.26	-107.56	-101.82	-23.52																									
Working Capital				-1.04	0.01																								1.04
Recurring Capital																													
EBITDA (€ Million)	-61.26	-107.56	-101.82	-4.94	30.16	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	30.14	1.04
Internal Rate of Return (IRR)	8.00%																												
Discount Rate	8.00%																												
Net Present Value (NPV) - €Million	(€0.0000)																												
Levelised Cost of Hydrogen	€0.1424																												

Cash Flow (€Million) - EBITDA Basis Techno-Econoic Evaluation of Deploying CCS in an SMR Based H2 Production using NG as Feedstock & Fuel Case 2B - CO2 Capture from PSA Tail Gas using Cryogenic and Membrane

Period	-3	-2	-1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Sales				86.06	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	
Selling and Distribution Expenses																													
let Sales Revenue				86.06	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	116.79	
Variable Costs CO2 Emission Tax				-52.66	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	-71.32	
CO2 Transport & Storage				-2.63	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	-3.57	
Gross Margin				30.76	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	
Fixed Costs				-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	-9.82	
let Margin				20.94	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	
Residual Value - Capital Expenditure																													
Capital Expenditure	-65.43	-114.88	-108.43	-25.09																									
Working Capital				-0.04	0.01																								0.0
Recurring Capital																													
BITDA (€ Million)	-65.43	-114.88	-108.43	-4.19	32.09	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	32.07	0.04
Internal Rate of Return (IRR)	8.00%																												
Discount Rate	8.00%																												
Net Present Value (NPV) - €Million	(€0.0000)																												
Levelised Cost of Hydrogen	€0.1401																												

Cash Flow (€Million) - EBITDA Basis Techno-Econoic Evaluation of Deploying CCS in an SMR Based H2 Production using NG as Feedstock & Fuel Case 3 - CO2 Capture from SMR's Flue Gas using MEA

Period	-3	-2	-1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Sales				101.17	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	
Selling and Distribution Expenses																													
let Sales Revenue				101.17	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	137.30	
Variable Costs CO2 Emission Tax				-57.92	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	-78.45	
CO2 Transport & Storage Cost				-4.91	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	-6.66	
Gross Margin				38.34	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	52.18	
Fixed Costs				-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	-11.54	
let Margin				26.80	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	
Residual Value - Capital Expenditure																													
Capital Expenditure	-82.74	-145.28	-136.73	-31.70																									
Working Capital				-2.04	0.01																								2.
Recurring Capital																													
EBITDA (€ Million)	-82.74	-145.28	-136.73	-6.93	40.66	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	2.0
Internal Rate of Return (IRR)	8.00%																												
Discount Rate	8.00%																												
Net Present Value (NPV) - €Million	€0.0000																												
Levelised Cost of Hydrogen	€0.1646																												

IEAGHG

Techno-Economic Evaluation of Standalone (Merchant) H₂ Plant

Revision No.: FINAL

Date: December 2016

Sheet: 111 of 112

Annex III:

Breakdown of Total Capital Requirements

	Total Ca	apital Req	uirements	i		
	Base Case	Case 1A	Case 1B	Case 2A	Case 2B	Case 3
	Euro (€)					
Total Plant Cost (TPC)						
Total Plant Cost	142,460,000	168,170,000	190,400,000	188,390,000	201,200,000	254,440,000
Contingencies	28,492,000	33,634,000	38,080,000	37,678,000	40,240,000	50,888,000
Sub-Total	170,952,000	201,804,000	228,480,000	226,068,000	241,440,000	305,328,000
Spare Parts	854,760	1,009,020	1,142,400	1,130,340	1,207,200	1,526,640
Start-Up & Commissioning Cost						
Start Up CAPEX	3,419,040	4,036,080	4,569,600	4,521,360	4,828,800	6,106,560
Additional Fuel Cost	1,478,446	1,526,705	1,612,371	1,539,572	1,475,093	1,624,222
0&M	1,074,356	1,232,018	1,284,036	1,279,333	1,309,308	1,433,890
Catalyst & Chemicals	163,214	265,197	293,993	289,735	216,080	345,328
Owner's Cost	11,966,640	14,126,280	15,993,600	15,824,760	16,900,800	21,372,960
Interest during Construction	32,941,928	38,871,174	43,989,192	43,520,631	46,452,142	58,709,969
Working Capital	36,337	1,036,337	1,313,691	1,036,337	36,337	2,036,337
Sub-Total	51,934,722	62,102,811	70,198,883	69,142,069	72,425,761	93,155,906
Total Capital Requirements (TCR)	222,886,722	263,906,811	298,678,883	295,210,069	313,865,761	398,483,906

IEAGHG	Revision No.:	FINAL
Techno-Economic Evaluation of Standalone (Merchant) H ₂ Plant	Date:	December 2016
		Sheet: 112 of 112

Annex IV:

Annual Operating Expenditure

- Base Case: SMR Based Hydrogen Plant without CO₂ Capture
- Case 1A: Hydrogen Plant with CO₂ Capture from Shifted Syngas using MDEA
- Case 1B: Hydrogen Plant with H₂ rich fuel firing burners and CO₂ Capture from Shifted Syngas using MDEA
- Case 2A: Hydrogen Plant with CO₂ Capture from PSA Tail Gas using MDEA
- Case 2B: Hydrogen Plant with CO₂ Capture using Cryogenic and Membrane Separation Technology
- Case 3: Hydrogen Plant with CO₂ Capture from SMR's Flue Gas using MEA

Annual Operating Expenditure Techno-Econoic Evaluation of Deploying CCS in an SMR Based H2 Production using NG as Feedstock & Fuel Techno-Econ Base Case

2400 0400																													
	Base Number €'000/y	Period -3	3 -2	2 -	1 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1. Fixed Cost ('000)																													
1a. Direct Labour	€ 2,280.00				2,280.0	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00	2,280.00
1b. Admin. & General Overhead	€ 991.71				991.7	1 991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71	991.71
1c. Insurance & Local Taxes	€ 1,709.52				1,709.5	2 1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52	1,709.52
1d. Maintenance	€ 2,564.28				2,564.20	3 2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28	2,564.28
	Total (Fixed (O&M Cost) €	- €	- €	- € 7,545.51	€ 7,545.51	€ 7,545.51	e 7,545.51	€ 7,545.51 €	7,545.51 €	7,545.51	€ 7,545.51 €	7,545.51 €	7,545.51 €	7,545.51 €	7,545.51 €	7,545.51 €	7,545.51 €	7,545.51 €	7,545.51 €	7,545.51 €	7,545.51 €	7,545.51 €	7,545.51 €	7,545.51 €	7,545.51 €	7,545.51 €	7,545.51	€ 7,545.51
2. Variable Cost ('000)																													
2a. Feedstock Cost	€ 60,906.75				44,878.6	6 60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75	60,906.75
2b. Fuel Cost	€ 10,058.63				7,411.6	3 10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63	10,058.63
2c. Make Up Water	€ 99.36				73.2	2 99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36
2d. Chemicals	€ 100.00				100.00	0 100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
2e. Catalyst	€ 320.00				320.0	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00
	Total (Variable	O&M Cost) €	- e	- €	- € 52,783.50	€ 71,484.75	€ 71,484.75	€ 71,484.75	€ 71,484.75 €	71,484.75 €	71,484.75	€ 71,484.75 €	71,484.75 €	71,484.75 €	71,484.75 €	71,484.75 €	71,484.75 €	71,484.75 €	71,484.75 €	71,484.75 €	71,484.75 €	71,484.75 €	71,484.75 €	71,484.75 €	71,484.75 €	71,484.75 €	71,484.75 €	71,484.75	€ 71,484.75
3. Revenues ('000)																													
3a. Electrcity Export (Import) to the Grid	€ 6,603.01				4,865.3	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01	6,603.01
	Total (Addition	al Revenues) €	- €	- €	- € 4,865.37	€ 6,603.01	€ 6,603.01	€ 6,603.01	€ 6,603.01 €	6,603.01 €	6,603.01	€ 6,603.01 €	6,603.01 €	6,603.01 €	6,603.01 €	6,603.01 €	6,603.01 €	6,603.01 €	6,603.01 €	6,603.01 €	6,603.01 €	6,603.01 €	6,603.01 €	6,603.01 €	6,603.01 €	6,603.01 €	6,603.01 €	6,603.01	E 6,603.01
4. Cost of Emissions ('000)																													
4a. CO2 Emissions Tax	€ -																												
	Total (Cost of Co	02 Emissions) €	- e	- €	- e -	€ -	e -	e -	e - e	- e	-	∈ - €	- €	- 6	- e	- €	- €	- e	- €	- e	- e	. e	- e	- e	- €	- e	- 6		e -
5. Cost of CO2 Transport & Storage ('000)																													
5a. CO2 Transport & Storage	€ -																												

- E - E	. € .	€ -	e . e	- €	-

Annual Operating Expenditure Techno-Econoic Evaluation of Deploying CCS in an SMR Based H2 Production using NG as Feedstock & Fuel Case 1A - CO2 Capture from Shifted Syngas using MDEA

	Base Number €'000/y	Period	-3	-2	-1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1. Fixed Cost ('000)																														
1a. Direct Labour	€ 2,580.00					2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00
1b. Admin. & General Overhead	€ 1,137.25					1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25	1,137.25
1c. Insurance & Local Taxes	€ 2,018.04					2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04	2,018.04
1d. Maintenance	€ 3,027.06					3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06	3,027.06
	Total (Fixed O	&M Cost) €	- €	- €	- € 8	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35 €	8,762.35
2. Variable Cost ('000)																														
2a. Feedstock Cost	€ 60,976.11				4	4,929.76	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11	60,976.11
2b. Fuel Cost	€ 12,305.74					9,067.39	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74	12,305.74
2c. Make Up Water	€ 101.86					75.06	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86	101.86
2d. Chemicals	€ 100.00					100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
2e. Catalyst	€ 320.00					320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00
	Total (Variable C	0&M Cost) €	- €	- €	- € 54	,492.21 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71 €	73,803.71
3. Revenues ('000)																														
3a. Electrcity Export (Import) to the Grid	€ 993.31					731.92	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31	993.31
	Total (Additional	Revenues) €	- €	- €	- €	731.92 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31 €	993.31
4. Cost of Emissions ('000)																														
4a. CO2 Emissions Tax	€ -																													
	Total (Cost of CO2	2 Emissions) €	. €	- €	. е	- €	- €	- €	- €	- e	. €	- €	- e	- €	- e	- €	- €	- €	- e	- €	- e	- €	. €	- 6	- €	- €	. €	- €	. e	-
5. Cost of CO2 Transport & Storage('000)																														
5a. CO2 Transport & Storage	€ 3,877.74					2,857.28	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74	3,877.74
	Total (Cost of CO	02 Storage) €	- €	- €	- € 2	2,857.28 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74 €	3,877.74

Annual Operating Expenditure Techno-Econoic Evaluation of Deploying CCS in an SMR Based H2 Production using NG as Feedstock & Fuel Case 1B - H2 Rich Fired SMR and CO2 Capture from Shifted Syngas using MDEA

	Base Number Period €'000/y	-3	-2	-1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1. Fixed Cost ('000)																													
1a. Direct Labour	€ 2,580.00				2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580
1b. Admin. & General Overhead	€ 1,185.26				1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,185.26	1,18
1c. Insurance & Local Taxes	€ 2,284.80				2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284.80	2,284
1d. Maintenance	€ 3,427.20				3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,427.20	3,42
	Total (Fixed O&M Cost) €	- €	- €	- € 9	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26	€ 9,477.26 €	9,477.26 €	9,477.26 €	9,477.26 €	9,477.26	€ 9,477
2. Variable Cost ('000)																													
2a. Feedstock Cost	€ 77,393.83			5	7,027.03	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,393.83	77,39
2b. Fuel Cost	€ -																												
2c. Make Up Water	€ 128.66				94.80	128.66	128.66	128.66	128.66	128.66	128.66	128.66	128.66	128.66	128.66	128.66	128.66	128.66	128.66	128.66	128.66	128.66	128.66	128.66	128.66	128.66	128.66	128.66	12
2d. Chemicals	€ 100.00				100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	10
2e. Catalyst	€ 405.00				405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	405.00	40
	Total (Variable O&M Cost) €	- €	- €	- € 5	7,626.83 €	78,027.48 €	78,027.48 €	78,027.48 €	78,027.48 €	78,027.48 €	78,027.48 €	78,027.48 €	78,027.48 €	78,027.48 €	78,027.48 €	78,027.48 €	78,027.48 €	78,027.48 €	78,027.48 €	78,027.48 €	€ 78,027.48 €	78,027.48 €	78,027.48	€ 78,027.48 €	78,027.48 €	78,027.48 €	78,027.48 €	78,027.48	€ 78,027
3. Revenues ('000)																													
3a. Electrcity Export (Import) to the Grid	€ 1,026.60				756.44	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,026.60	1,02
	Total (Additional Revenues) €	- €	- €	- €	756.44 €	1,026.60 €	1,026.60 €	1,026.60 €	1,026.60 €	1,026.60 €	1,026.60 €	1,026.60 €	1,026.60 €	1,026.60 €	1,026.60 €	1,026.60 €	1,026.60 €	1,026.60 €	1,026.60 €	1,026.60 €	€ 1,026.60 €	1,026.60 €	1,026.60	€ 1,026.60 €	1,026.60 €	1,026.60 €	1,026.60 €	1,026.60	€ 1,02€
4. Cost of Emissions ('000)																													
4a. CO2 Emissions Tax	€ -																												
	Total (Cost of CO2 Emissions) €	- e	- €	- e	- €	- €	- €	- €	- e	- €	· 6	- e	- €	- €	- e	- e	- e	- e	- €	- (- (- (∈ -€	- €	- 6	- e		€
5. Cost of CO2 Transport & Storage ('000)																													
5a. CO2 Transport & Storage	€ 4,908.97				3,617.14	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,908.97	4,90
	Total (Cost of CO2 Storage) €	- e	- €	- e :	3.617.14 €	4.908.97 €	4 908 97 E	4 908 97 <i>€</i>	4 908 97 <i>€</i>	4 908 97 E	4 908 97 €	4 908 97 E	4 908 97 <i>€</i>	4 908 97 E	4 908 97 €	4 908 97 E	1 908 97 6	1 908 97 E	1 908 97 E	4 908 97 6	= <u>4 908 97</u> 6	4 908 97 6	4 908 97 4	F 4 908 97 F	4 908 97 <i>€</i>	4 908 97 €	4 908 97 E	4,908,97	E 4 90'

Annual Operating Expenditure Techno-Econoic Evaluation of Deploying CCS in an SMR Based H2 Production using NG as Feedstock & Fuel Case 2A - CO2 Capture from PSA Tail Gas using MDEA

	Base Number €'000/y	Period	-3	-2	-1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1. Fixed Cost ('000)																														
1a. Direct Labour	€ 2,580.00					2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00
1b. Admin. & General Overhead	€ 1,180.92					1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92	1,180.92
1c. Insurance & Local Taxes	€ 2,260.68					2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68	2,260.68
1d. Maintenance	€ 3,391.02					3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02	3,391.02
	Total (Fixed C	O&M Cost)	€ - €		€ -	€ 9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62 €	9,412.62	9,412.62
2. Variable Cost ('000)																														
2a. Feedstock Cost	€ 60,904.13					44,876.73	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13
2b. Fuel Cost	€ 12,995.33					9,575.50	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33	12,995.33
2c. Make Up Water	€ 101.36					74.69	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36	101.36
2d. Chemicals	€ 100.00					100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
2e. Catalyst	€ 320.00					320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00
	Total (Variable	O&M Cost)	€.€		€ -	€ 54,946.92 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82 €	74,420.82	74,420.82
3. Revenues ('000)																														
3a. Electrcity Export (Import) to the Grid	-€ 712.36					-524.90	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36	-712.36
	Total (Additiona	al Revenues)	e .e		€ -	-€ 524.90 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -€	712.36 -4	712.36
4. Cost of Emissions ('000)																														
4a. CO2 Emissions Tax	€ -																													
	Total (Cost of CO	02 Emissions)	€.€	e - (€ -	€ - €	- €	- e	- €	- €	- e	- €	- €	. €	- €	- e	- €	- €	- €	- €	- €	. €	· €	- e	€	- e	. €	- €	- (
5. Cost of CO2 Transport & Storage('000)																														
5a. CO2 Transport & Storage	€ 3,791.72					2,793.90	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72	3,791.72
	Total (Cost of C	:O2 Storage)	€ - €		€ -	€ 2,793.90 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72 €	3,791.72	3,791.72

Annual Operating Expenditure Techno-Econoic Evaluation of Deploying CCS in an SMR Based H2 Production using NG as Feedstock & Fuel Case 2B - CO2 Capture from PSA Tail Gas using Cryogenic and Membrane

	Base Number €'000/y	Period -3	-2	-1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1. Fixed Cost ('000)																													
1a. Direct Labour	€ 2,580.00				2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00
1b. Admin. & General Overhead	€ 1,208.59				1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59	1,208.59
1c. Insurance & Local Taxes	€ 2,414.40				2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40	2,414.40
1d. Maintenance	€ 3,621.60				3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60	3,621.60
	Total (Fixed O&M C	Cost) € -	€ -	. €	- € 9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59 €	9,824.59
2. Variable Cost ('000)																													
2a. Feedstock Cost	€ 60,904.13				44,876.73	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13
2b. Fuel Cost	€ 9,900.32				7,294.97	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32	9,900.32
2c. Make Up Water	€ 99.36				73.22	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36	99.36
2d. Chemicals	€ 100.00				100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
2e. Catalyst	€ 320.00				320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00
	Total (Variable O&M	Cost) € -	€ -	- €	- € 52,664.92 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81 €	71,323.81
3. Revenues ('000)																													
3a. Electrcity Export (Import) to the Grid	€ 189.08				139.32	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08	189.08
	Total (Additional Rev	renues) € -	€ -	. €	- € 139.32 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08 €	189.08
4. Cost of Emissions ('000)																													
4a. CO2 Emissions Tax	€ -																												
	Total (Cost of CO2 Em	issions) € -	€ -	- €	- e - e	- €	- e	- €	- €	- €	. €	- €	- €	- €	- €	- €	. €	- €	- €	. €	- e	- €	- €	. €	- €	. €	- €	- €	-
5. Cost of CO2 Transport & Storage ('000)																													
5a. CO2 Transport & Storage	€ 3,569.04				2,629.82	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04	3,569.04
	Total (Cost of CO2 St	torage) € -	- e	. €	- € 2,629.82 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04 €	3,569.04

Annual Operating Expenditure Techno-Econoic Evaluation of Deploying CCS in an SMR Based H2 Production using NG as Feedstock & Fuel Case 3 - CO2 Capture from SMR's Flue Gas using MEA

	Base Number Period €'000/y	-3	-2 -1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Fixed Cost ('000)																												
1a. Direct Labour	€ 2,580.00			2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,580.00	2,58
1b. Admin. & General Overhead	€ 1,323.59			1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,323.59	1,32
1c. Insurance & Local Taxes	€ 3,053.28			3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,053.28	3,0
1d. Maintenance	€ 4,579.92			4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,579.92	4,5
	Total (Fixed O&M Cost) €	- €	- €	 € 11,536.79 	€ 11,536.79	€ 11,536.79	€ 11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79 €	11,536.79	€ 11,53
Variable Cost ('000)																												
2a. Feedstock Cost	€ 60,904.13			44,876.73	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,904.13	60,90
2b. Fuel Cost	€ 17,058.54			12,569.45	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,058.54	17,05
2c. Make Up Water	€ 70.07			51.63	70.07	70.07	70.07	70.07	70.07	70.07	70.07	70.07	70.07	70.07	70.07	70.07	70.07	70.07	70.07	70.07	70.07	70.07	70.07	70.07	70.07	70.07	70.07	7
2d. Chemicals	€ 100.00			100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	1
2e. Catalyst	€ 320.00			320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	320.00	33
	Total (Variable O&M Cost) €	- €	- €	 € 57,917.81 	€ 78,452.75	€ 78,452.75 €	€ 78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75 €	78,452.75	€ 78,4
Revenues ('000)																												
3a. Electrcity Export (Import) to the Grid	€ 283.61			208.98	283.61	283.61	283.61	283.61	283.61	283.61	283.61	283.61	283.61	283.61	283.61	283.61	283.61	283.61	283.61	283.61	283.61	283.61	283.61	283.61	283.61	283.61	283.61	28
	Total (Additional Revenues) €	- €	- €	- € 208.98	€ 283.61	€ 283.61 €	€ 283.61 €	283.61 €	283.61 €	283.61 €	283.61 €	283.61 €	283.61 €	283.61 €	283.61 €	283.61 €	283.61 €	283.61 €	283.61 €	283.61 €	283.61 €	283.61 €	283.61 €	283.61 €	283.61 €	283.61 €	283.61	€ 283
Cost of Emissions ('000)																												
4a. CO2 Emissions Tax	€ -																											
	Total (Cost of CO2 Emissions) €	- €	- €	- € -	€ -	€ - 0	e - e	- €	. €	. €	- €	. €	- €	. €	. €	. €	. €	- €	. €	- e	- e	- €	. €	- e	- €	- €	-	€
Cost of CO2 Transport & Storage ('000)																												
5a. CO2 Transport & Storage	€ 6,661.08			4,908.16	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,661.08	6,66
	Total (Cost of CO2 Storage) €	- e	6	- € 4.908.16	£ 6 661 09	C C C C A D D	C CC4 00 C	C CC4 00 C	C CC4 00 C	C CC4 00 C	C CC4 00 C	C CC4 00 C	C CC4 00 C	C CC4 00 C	C CC4 00 C	C CC4 00 C			C CC4 00 C		C CC4 00 C	0.004.00	6 6 66					

IEA Greenhouse Gas R&D Programme

Pure Offices, Cheltenham Office Park, Hatherley Lane, Cheltenham, Glos. GL51 6SH, UK

Tel: +44 1242 802911 mail@ieaghg.org www.ieaghg.org