Perspectives for Wind Energy

Joachim Peinke ForWind Carl-von-Ossietzky Universität Oldenburg <u>peinke@uni-oldenburg.de</u>

Göttingen 2008

ForWind

- Center for wind energy research (ForWind) is a common center of
 - Carl von Ossietzky University Oldenburg
 - Leibniz University Hanover
 - University of Bremen in the process of joining

ForWind interdisciplinary research

energy consumption

example electricity in households in Germany

- about 500 PJ - ???

energy consumption

example electricity in households in Germany

- about 500 PJ - ???

- 200 Watt/Person = 2×100 Watt bulbs are burning permanently

energy consumption

example electricity in households in Germany

- about 500 PJ - ???

- 200 Watt/Person = 2×100 Watt bulbs are burning permanently

- total energy 5 - 6 kW / person

Göttingen 2008

CARL VON OSSIETZAY UNIVERSITÄT OLDENBURG

energy consumption with respect to oil

after IEA : worldwide 84,7 Million barrel / day

truck with typically 35.000 liter

Göttingen 2008

energy consumption with respect to oil

after IEA : worldwide 84,7 Million barrel / day

truck with typically 35.000 liter

Göttingen 2008

=> 400.000 trucks per day or 7.200km line

UNIVERSITÄT OLDENBURG

Climate change ...

Accelerated Greenland Melt-Down

Current volume loss: 2.2 x 10^{11} m³/yr ≈ 0.007 Sv Has doubled over past decade

Volume of GIS: 2.8 x 10^{15} m³ Time-scale 1000 years \Rightarrow 2.8 x 10^{12} m³/yr \approx 0.1 Sv

Wind energy - 20 20 20 - 2020 expected that 20% of energy provided by renewable - 2006 additionally installed 16 GW + 32% - Germany in total about 20 GW = 6% of electr. power

about +10 GW per year new employees

Oldenburg 10/2008

resource estimation - renewable Energies

resource estimation - renewable Energies

	sun	wind
power	1 kW/m²	1 kW/m ²
efficiency	15%	40%
running time/a	1000h	2000-3000h
mean power	17 W/m ²	100 -150 W/m ²
installation costs	4 \$/W _{inst}	1 \$/W _{inst}

private power supply (el) by 10 m^2 PV or 1.5 m^2 WEC

one wind turbine

standard size of WT 2MW

 $(D=80m \text{ or } 5000m^2)$

good for electricity of 2500 -5000 persons (personal demand)

Göttingen 2008

financial aspects

oil price

1 barrel (159 I) about 80 \$

1 liter about 0.5 \$ <=> 1 0kWh

1 kWh (in oil) 5 cent

1 kWh electricity by oil (50% efficiency) 10 cent = 8 Euro cent

wind energy 1 kWh 8 cent

cheap 1 kWh 4 cent with old power plants

technological development

Persian wind mill

15th century wind mill

new dutch wind mill

french wind mill

modern wind mill

Göttingen 2008

Wind energy - last decades

the sizes of modern offshore WEC - M5 Repower (D=126m)

Oldenburg 10/2008

comparing the sizes of A 380 and M5 Repower (D=126m)

Oldenburg 10/2008

technological development where are problems / challenges?

technological development where are problems / challenges?

ø grid integration

-1- grid integration resource the wind - fluctuation power production

weather

fluctuating

to improve the wind energy conversion it is essential to improve the understanding of the source

resource the wind

large scale effects changing weather situations forecast - energy meteorology

Oldenburg 10/2008

Modeling the wind field

annual

Modeling the wind situations from annual values down to fluctautions within seconds

<Joachim Peinke> / page

For Wind Energy Research

resource the wind

large scale effects

forecast - energy meteorology

meso scale effects

boundary layer

North sea

technological development where are problems / challenges?

- ø grid integration
- failures O&M

probems and challenges -2- failures - O&M

meeting of EAWE in Ispra good part of the costs are given by non pre-visible failures

waterpower Saalach

For Wind Ving Research

small scale turbulence IEC - by degree of turbulence (standard deviation) improved analysis - correlation by increments (gusts statistics)

temporal increment

$$u_{\tau} := u(t+\tau) - u(t)$$

spatial increment

$$u_r := u(x) - u(x+r)$$

mechanical loads from new wind field model

- mechanical load estimation with FLEX 5
- increased loads due to non Gaussian wind fileds

Comparison between the Kaimal and the von Karman models and the Kleinhans model, Vwind=5m/s, m=12, config Kleinhans: B

Oldenburg 10/2008

- better understanding of high frequency dynamics
 - more reliable wind turbine
- net integration
 - save and sustainable energy supply

picture from GE - Wind

- better understanding of high frequency dynamics
 - more reliable wind turbine
- net integration
 - save and sustainable energy supply

picture from GE - Wind

- Wind energy may have an important impact on our future
- Germany in 2007: 25 bilion Euro with renewable energie and 250 000 employees (BMU - EE in Zahlen)

Thank you