

Roadmap 2050: A practical guide to a prosperous, low-carbon Europe

Harvard Energy Policy Group Cambridge, MA 21 May 2010

CONFIDENTIALAMDID ROBRIETEATRIKY

An Any see of this is not attain a with the up and the provided the proper and the proper and the proper and the provided the proper and the provided the proper and the provided the provi

Roadmap 2050 project team

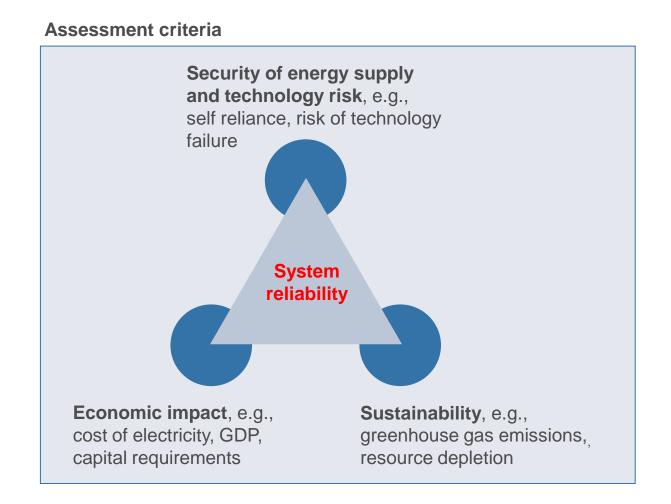
ECF (Philanthropic European climate foundation)	Overall sponsor and funderFinal report will be ECF branded
McKinsey & Company (Strategic consultancy)	 Overall content leadership, project management, data collection, analysis Reach out to industries, workshop facilitation
ECN (Energy research center)	 Support on assumptions for technologies (lead on nuclear) Policy development and recommendations based on analytics
KEMA (Technical grid consultancy)	 Grid design and investments, production capacity and costs associated with providing a plausible, secure electricity system for each of the pathways
Imperial College London	 In-depth modeling of system balancing requirements, reliability, optimization of transmission and back-up investment
The Centre (Political consultancy)	 Manage contact to EU-commission and parliament and ensure alignment with their needs. Participate in outreach to member states
Office for Metropolitan Architecture – R. Koolhaas	 Provide creative participation in the development of narrative. Provide conceptual framing and visual communication
ESC (Energy Strategy Centre)	 Design the report launch communication strategy Manage the launch of the report including holding presentations, meetings
RAP (Regulatory Assistance Project)	 Provide technical and policy input from their global experience
Oxford Economics (Macro- economic consultancy)	 Provide analysis of macro-economic impacts of decarbonization scenarios

Key stakeholders are involved by providing input and reviewing results

80% by 2050 only possible with zero-carbon power supply

EU-27 total GHG emissions GtCO ₂ e per year	Sector	Abatement	Within sector ^{1, 2}	Fuel shift
5.9	Power Road transport	95% to 100% 95%	>95% 20%	75% (electric vehicles, biofuels
1.2 1.2 1.2 0.9 0.9 1.0	Air & sea transport	50%	30%	and fuel cells) 20% (biofuels)
0.5 0.6 0.7 1.1 1.0 1.0	Industry Buildings	40% 95%	35% (CCS ³) 45% (efficiency	5% (heat pumps) 50% (heat
0.9 0.9 0.9 0.4 0.1 0.2 0.3 0.9 0.4 0.1 0.6 0.1	Waste	100%	and new builds)	pumps)
0.2 0.3 0.3 0.6 0.1 0.5 0.4 0.3 0.2 0.2 -0.3 -0.3 -0.3 -0.3 1990 2010 2030 2050 2050	Agriculture Forestry	20% -0.25 GtCO ₂ e	20% Carbon sinks	

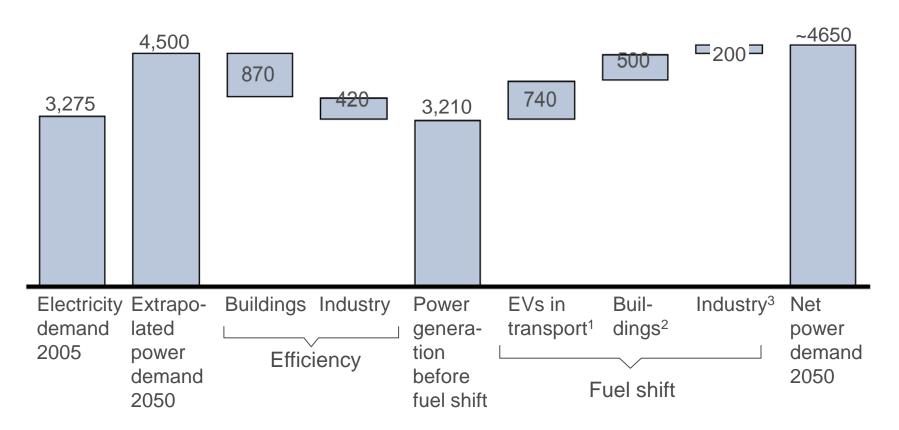
1 Based on the McKinsey Global GHG Abatement Cost Curve


2 Large efficiency improvements already included in the baseline

3 CCS applied to 50% of industry (cement, chemistry, iron and steel, petroleum and gas, not applied to other industries)

SOURCE: Team analysis

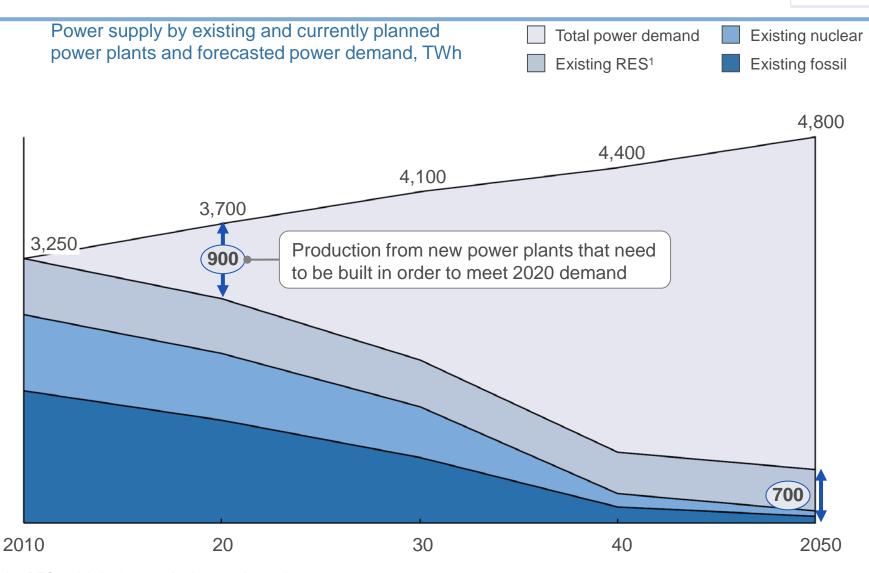
Pathways must be reliable, technically feasible, have a positive impact on the economy...& be nearly zero carbon



Efficiency flattens demand growth, 'fuel shift' drives it back up to the same level as 'BaU', but far less energy intensive

European Climate Foundation

EU-27 power demand, TWh per year


1 Assumption: electrification of 100% LDVs and MDVs (partially plug-in hybrids); HDVs remain emitting ~10% while switching largely to biofuel or hydrogen fuel cells

2 Assumption: 90% of remaining primary energy demand converted to electricity usage in buildings for heating/cooling from heat pumps; assumed to be 4 times as efficient as primary fuel usage

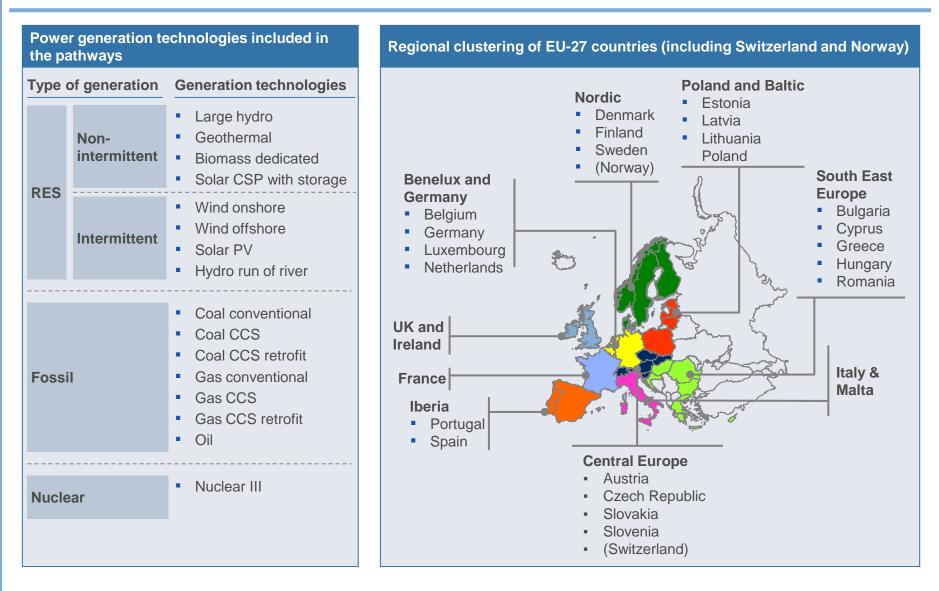
3 Assumption: 10% fuel switch of remaining combustion primary energy demand converted to electricity in industry for heating from heat pumps; assumed to be 2.5 times as efficient as primary fuel usage

SOURCE: Team analysis

Most of the non-hydro capacity will be retired by 2040

1 Existing RES mainly hydro; remains in operation until 2050

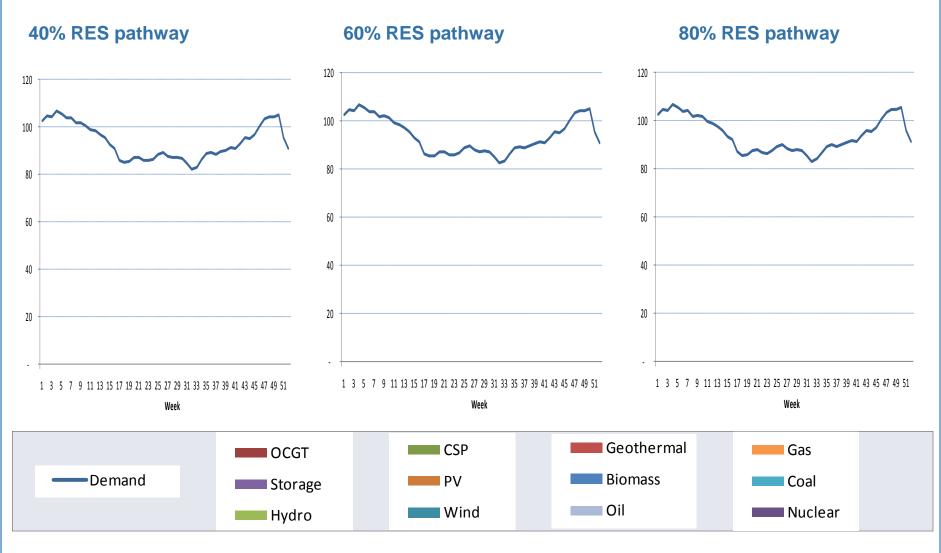
Climate Foundation



40% RES ¹ 30% Nuclear 30% CCS	 RES share close to currently legally committee by the EU and the IEA baseline Sensitivities on a high nuclear share and a high thermal / CCS share are included 	d	
60% RES 20% Nuclear 20% CCS 80% RES 10% Nuclear 10% CCS	 RES mix based on current deployment (minimum), aim for a broad mix of technologies and theoretical deployment (maximum) Equal shares for nuclear and thermal / CCS 	 Fue uration Costing Lea Grid 	ional sensitivities el prices (coal, gas, nium) st of capital arning rates d solutions ctricity demand
100% RES	 Based on 80% pathway Conventional and nuclear replaced by CSF Africa (15%) and enhanced geothermal (5%) Same shares for RES as the 80% pathway 	%)	

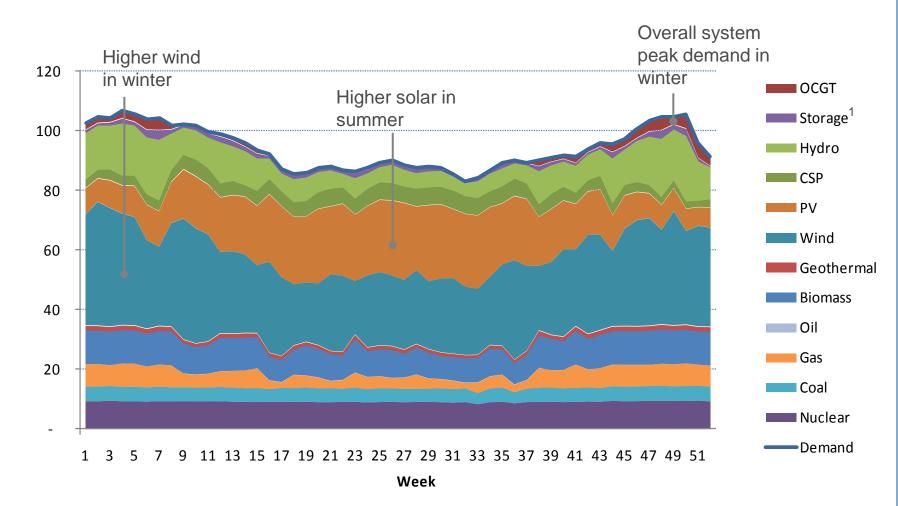
1 Renewable energy sources

Power generation technologies that are at least in late stage development are included



A combination of solar and wind is more stable than wind alone

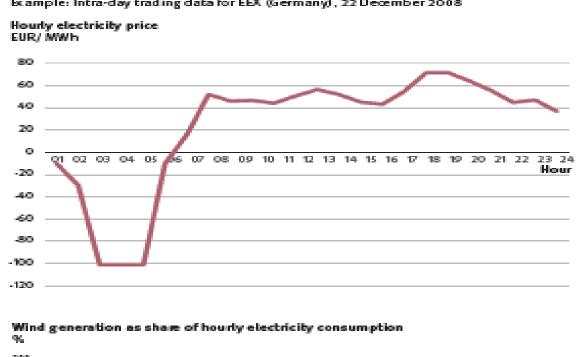
European Climate Foundation


Yearly energy balance, 20% DR, TWh per week

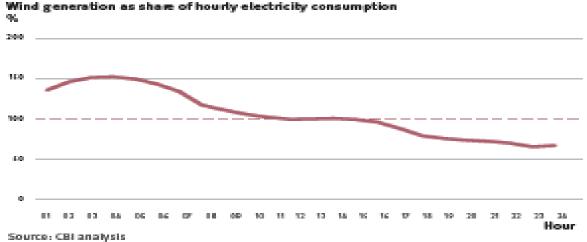
1 Storage included in the model relates to the existing hydro storage available across the regions

Increased interconnectivity across regions exploits natural counter-cyclicality of primary European RE resources

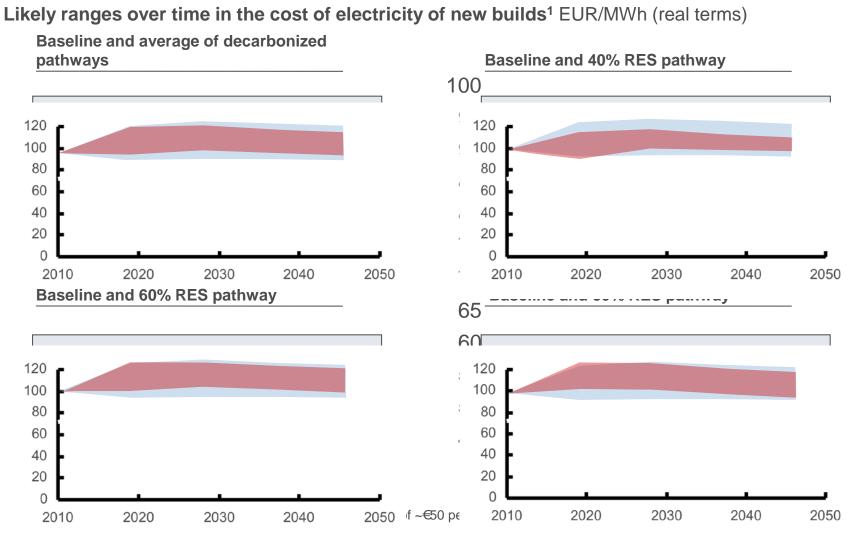
Overview of yearly energy balance, 80% RES pathway, TWh per week



1 Storage included in the model relates to the existing hydro storage available across the regions

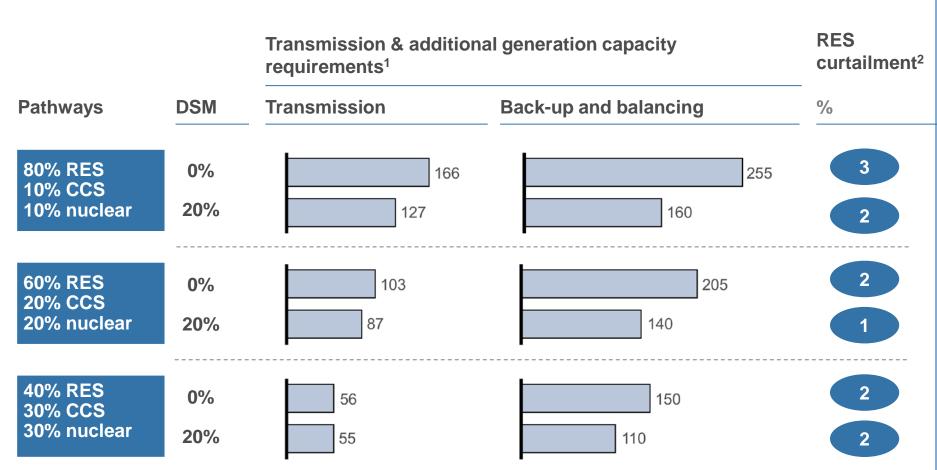

European Climate Foundation

Example: Germany

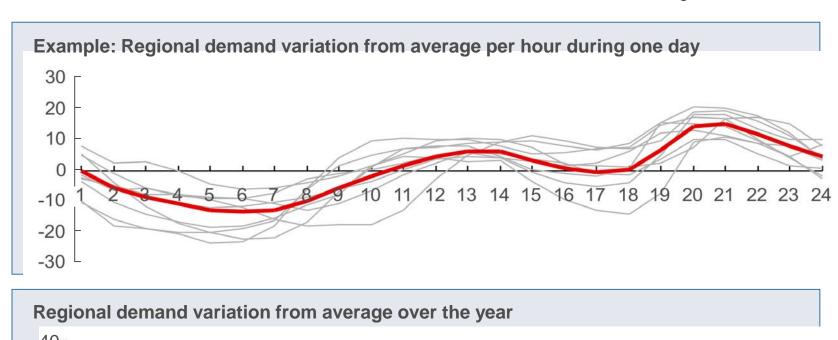


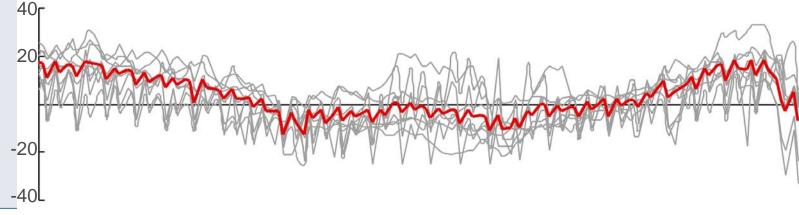
Example: Intra-day trading data for EEX (Germany), 22 December 2008

Confidence ranges for assumptions: likely outcomes are within 10-15% of each other across all pathways



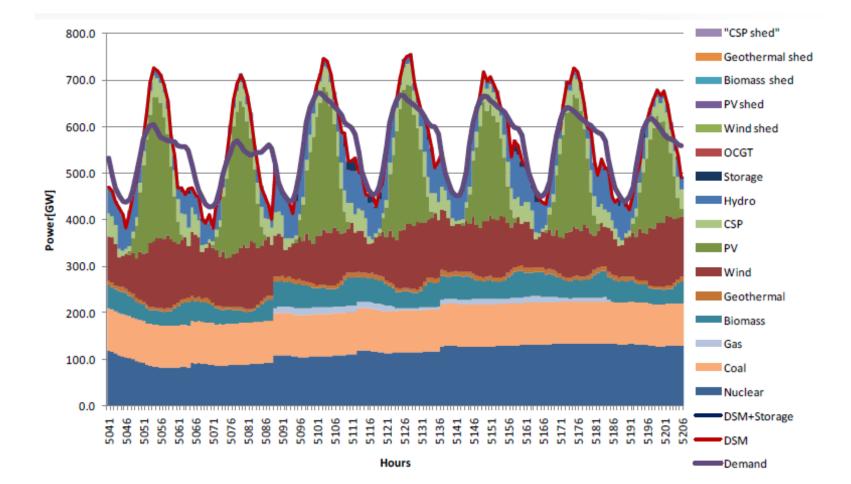
1 Based on a WACC of 7% (real after tax), computed by technology and weighted across technologies based on their production; including grid


Demand flexibility reduces grid and related investments, minimizes low-carbon resource curtailment, minimizes cost

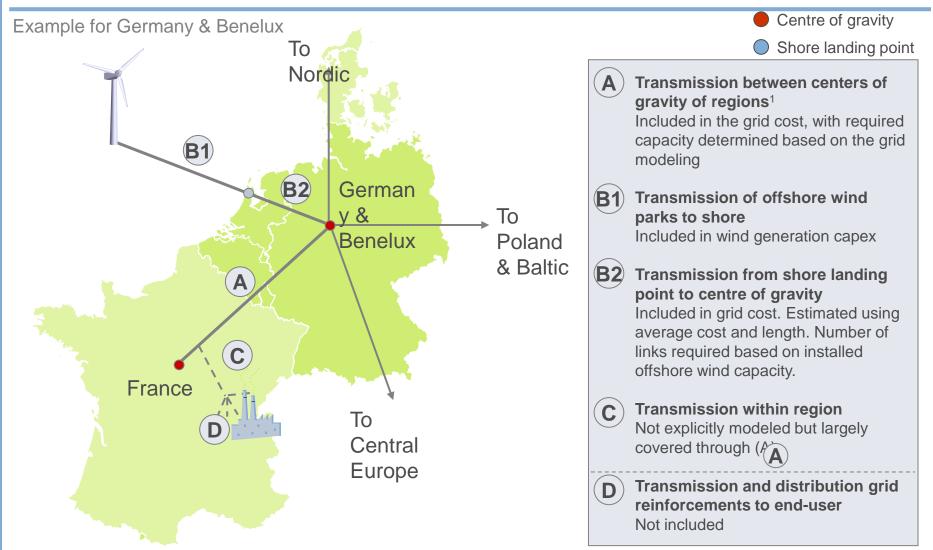

2050, GW

European Climate Foundation

Increased transmission cancels out both daily and seasonal fluctuations



NOTE Excluding additional seasonality demand from heat pumps and extreme weather cases SOURCE: Imperial College; KEMA analysis

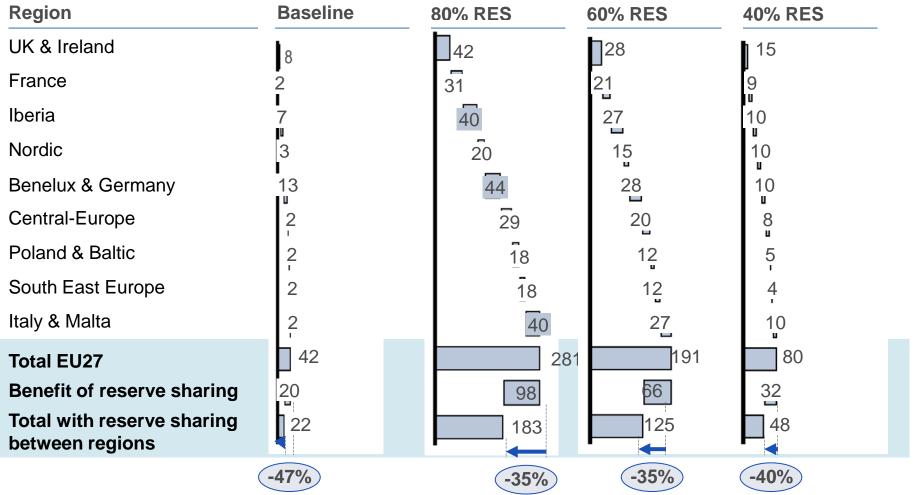

Increased demand flexibility through 'smart' grid investments, European is a cost-effective alternative to curtailing low-carbon

sources

Both inter- and intra-regional transmission requirements are quantified

1 This assumes a firm capacity capability from centre of gravity to centre of gravity that would allow for the dispersion of power along the way implicitly covering intra-regional reinforcements

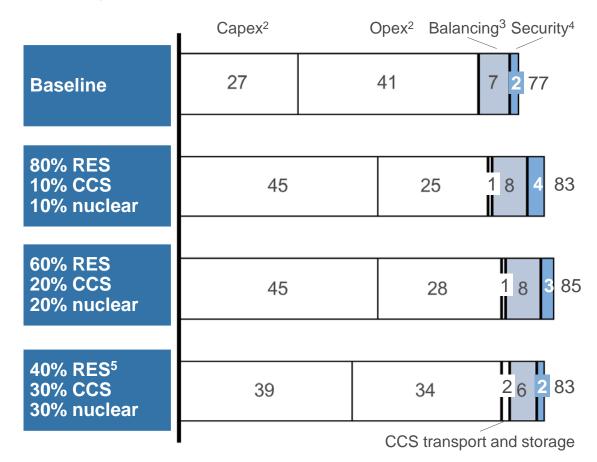
SOURCE: KEMA; team analysis


Centre of gravity

Interconnection	Capacity addi- tional (existing) [GW]	Annual utilization [%]
UK&Ireland-France	8 (2)	75
UK&ireland-Nordel	0 (0)	0
UK&Ireland-Benelux&Germany	3 (0)	83
France-Iberia	32 (1)	83
France-Benelux&Germany	14 (6)	78
France-Central-Europe	7 (3)	93
France-Italy&Malta	0 (3)	92
Nordel-Benelux&Germany	0 (3)	75
Nordel-Poland&Baltic	4 (1)	60
Benelux&Germany-Central-EU	0 (4)	74
Benelux&Germany-Poland&Baltic	9 (1)	81
Central-Europe-Poland &Baltic	0 (2)	77
Central-South East EU	1 (2)	80
Central-Europe-Italy	0 (5)	58
South East EU-Italy	9 (1)	79
Total	87 (34)	

Reserve sharing between regions reduces total reserve requirements by ~40%

Maximal reserve requirement¹, GW



1 Reserve refers to reserve required at four hour ahead of real-time. This is required to manage the larger changes in generation (due to plant outages and expected uncertainty in intermittent output) expected over that four hour period that could require starting additional (or switching off) generation

All pathways can deliver power with roughly the same cost and reliability as the baseline with carbon price $\leq \leq 0/tCO_2$

Average new built CoE from 2010 to 2050¹, EUR/MWh (real terms)

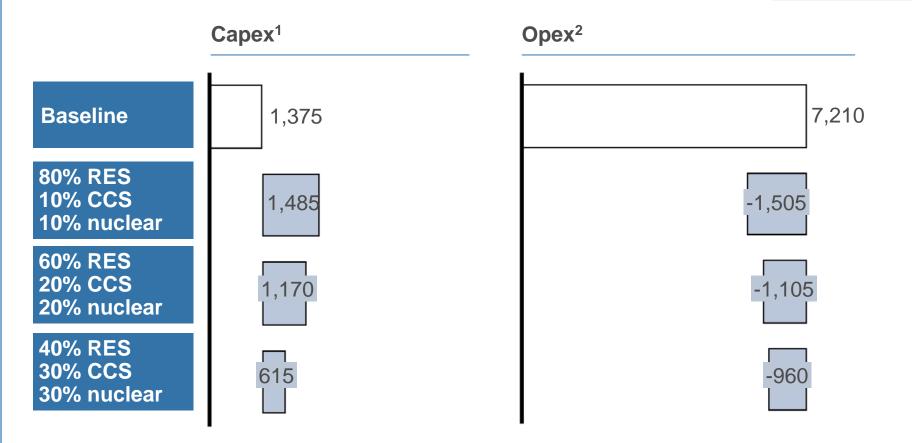
1 Weighted average based on the CoE in each 10-year time frame (2010, 2020, 2030, 2040, 2050)

2 Generation only

3 Cost related to non optimal plant use, system dispatch cost for secure operation, running backup plants, storage losses, reserve and response cost

- 4 Transmission and additional generation capex as well as fixed opex for transmission and backup
- 5 Grid not modeled by KEMA yet, impact estimated by interpolation from the other pathways

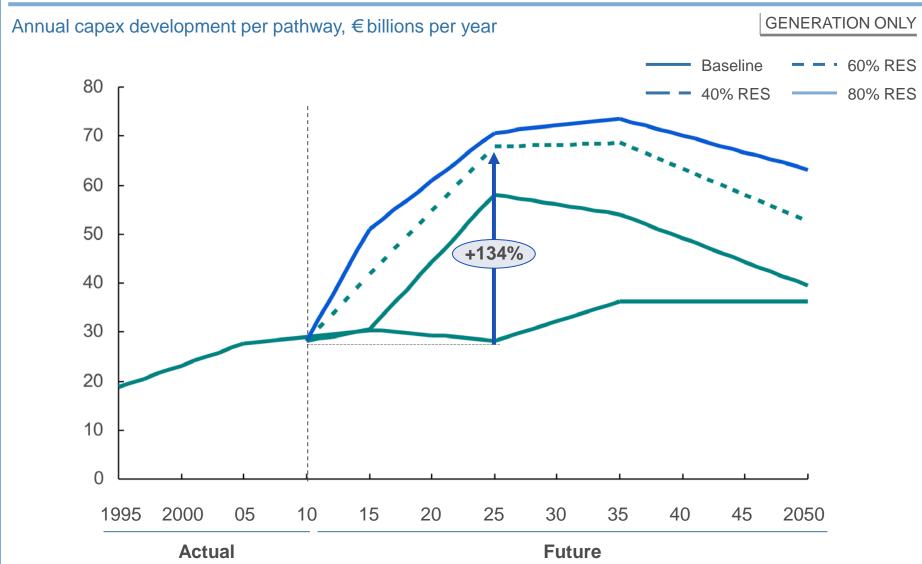
SOURCE: Team analysis


Decarbonized electricity requires more capex and less

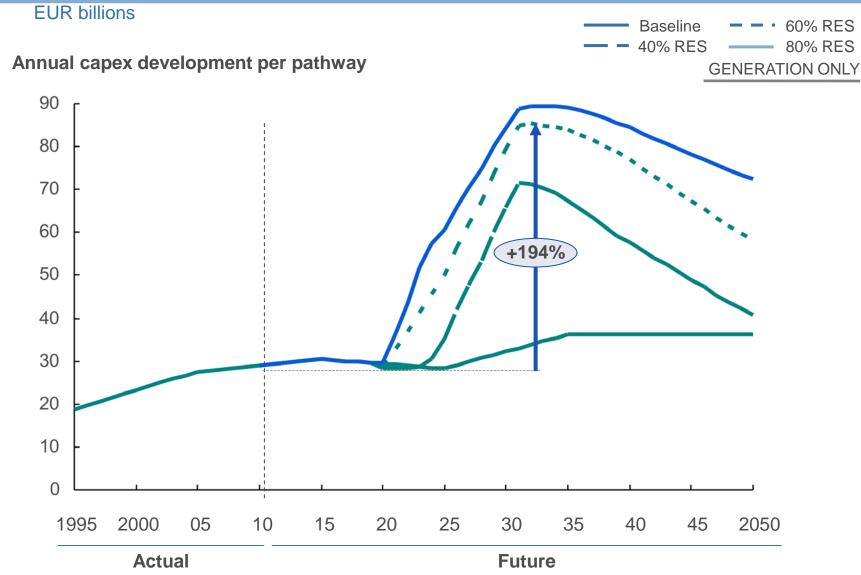
opex

Cumulative cost, 2011-2050, EUR billion, Real terms, no CO₂ costs included

INCLUDING GENE-RATION AND GRID



1 For new builds from 2011 to 2050, including additional grid capex


2 Opex for all new and operating plants includes variable, fixed, as well as fuel cost; also includes opex for additional backup plants and additional grid

A doubling of capex would be required over the next 15 years

Delayed by 10 years, the annual capex would be up by almost 200%

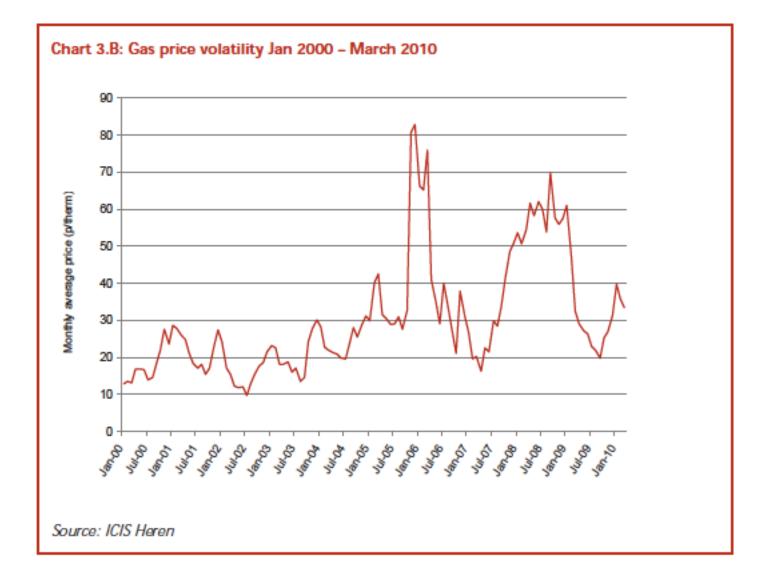
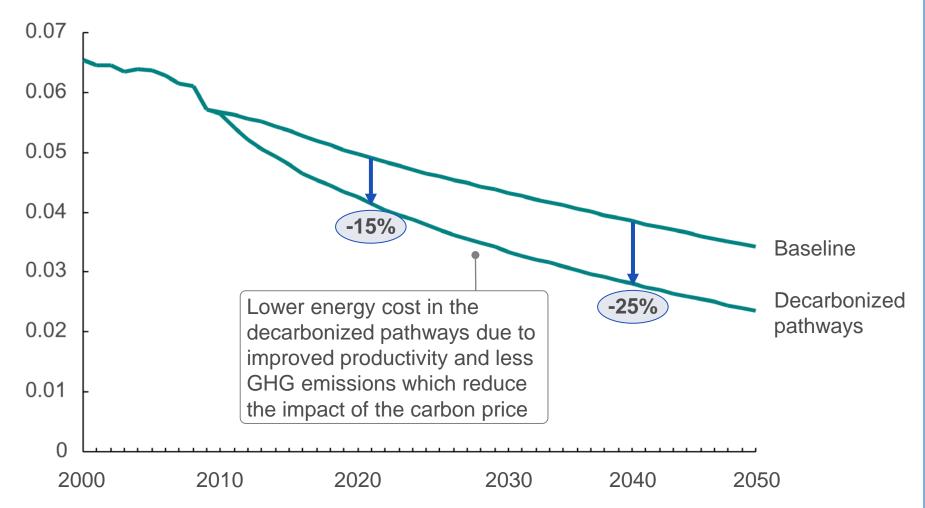


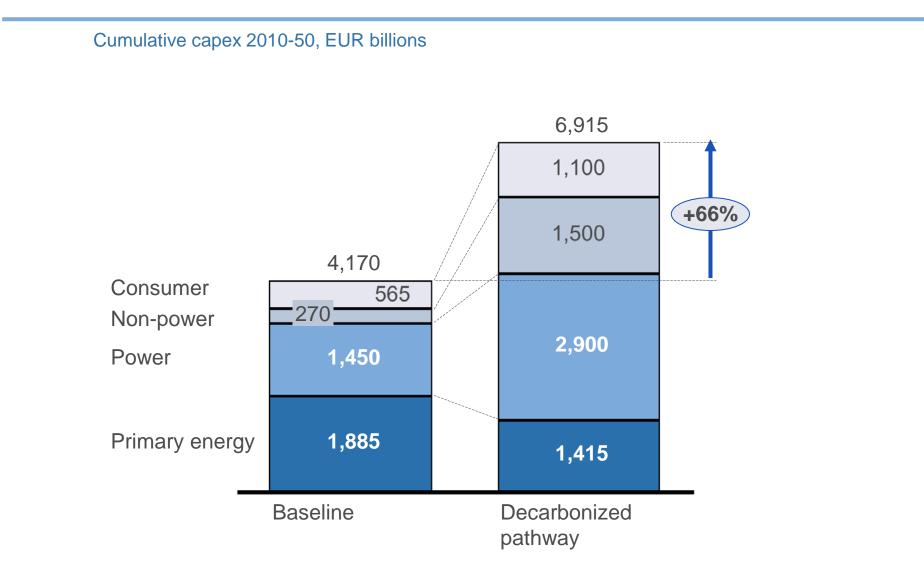
Exhibit 20 Uncertainty on power prices and construction costs could hinder investments in nuclear power

Variable	Base case	Range	Impact on value of nuclear power plants (£m/GW), Base case: £332m/ GW		
Most significant variables					
Gas price (p/th) Driver of power prices	50 ¹	30/70	-1,005	1,004	
CO2 price (EUR/t) Oriver of power prices	30°	10/50	-517	517	
Construction costs (£/ kW)	2,500	3,000/2,000	-393	392	
Cost of capital (%)	71	8/6	-362	469	
Plant life (years)	40	30/50	-216	126	
Capacity factor (%)	90	85/95	-154	153	
Decommissioning costs (£/ kW)	500	1,000/300	-62	25	

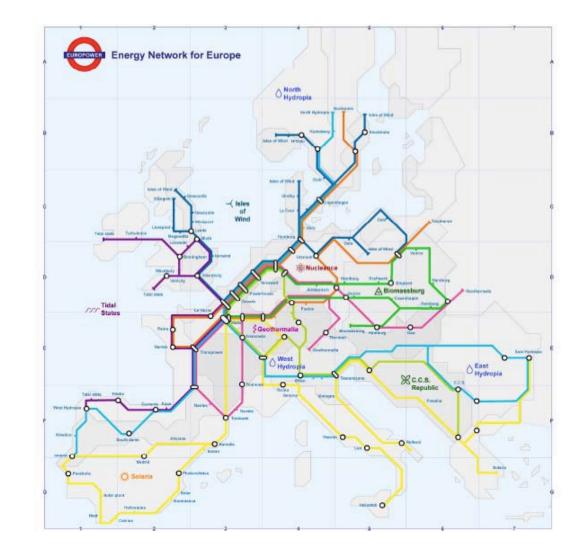
Source: CBI analysis



Energy cost decreases in the baseline, but even more so in the decarbonized pathways

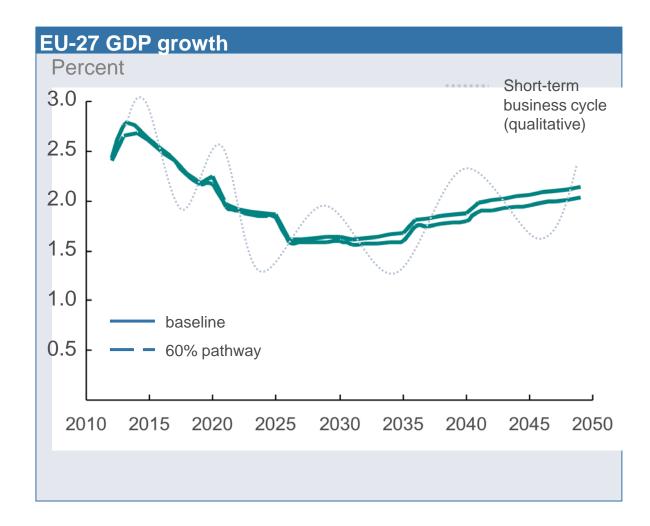


NOTE: Energy prices are a weighted average of prices faced by consumers weighted by the shares of consumption of different fuels


The pathways require up to 70% more capex for all energy sectors: efficiency investments and a shift away from oil & gast Climate Foundation

NOTE Excludes additional capex for EV batteries and fuel cells for vehicles (in total approximately EUR 500 billion)

SOURCE: IEA WEO 2009 (fossil fuel capex 2010-30, assumed constant 2030-50), McKinsey Global Cost curves, team analysis



BACK-UP

Grid modeling methodology (more detail)

Despite slightly higher initial unit costs for power, impact on overall economic performance is neutral to positive

Learning rates are applied to estimate future capex

			Learning	Yearly		60% RES / 20% n pathway	uclear / 20% CCS
Type of	generation	Generation technologies	rate ¹ Percent	Reductions Percent	Capex 2010 €/KW	Capex 2030 €/KW	Capex 2050 €/KW
		Coal Conventional		0.5	1,400-1,600	1,250-1,450	1,150-1,350
		Gas Conventional		0.5	700-800	650-750	600-700
		Coal CCS ²	12		2,700-2,900 ³	2,000-2,200	1,750-1,950
Fossil		Gas CCS ²	12		1,500-1,600 ³	1,000-1,200	900-1,100
		Coal CCS ² retrofit	12		1,250-1,450 ³	600-800	500-700
		Gas CCS ² retrofit	12		750-950 ³	350-550	300-500
		Oil		0.5	750-850	700-800	600-700
Nuclea	r	Nuclear ⁴	3-5		2,700-3,300	2,700-3,300	2,600-3,200
		Wind Onshore	5		1,000-1,300	900-1,200	900-1,200
	Intermittent	Wind Offshore	5		3,000-3,600	2,000-2,400	1,900-2,300
		Solar PV	15		2,400-2,700	1,000-1,400	800-1,200
RES		Solar CSP	HC ⁵		4,000-6,000	2,900-3,500	2,200-2,600
	Non- Intermittent	Biomass dedicated		1.0	2,300-2,600	1,600-1,900	1,300-1,600
		Geothermal		1.0	2,700-3,300	2,000-2,400	1,800-2,200
		Hydro		0.5	1,800-2,200	1,750-2,000	1,500-1,900

1 Percent cost reduction with every doubling of accumulated installed capacity

2 Learning rate of 12% applies to CCS part; Learning of coal/gas plant identical to coal/gas 4 France starts with lower capex of 2750 €/kWe; LR on Gen II and Gen III separated

3 starts in 2020, additional to conventional plants for retrofits 5 Hardcoded input based on workshop including storage

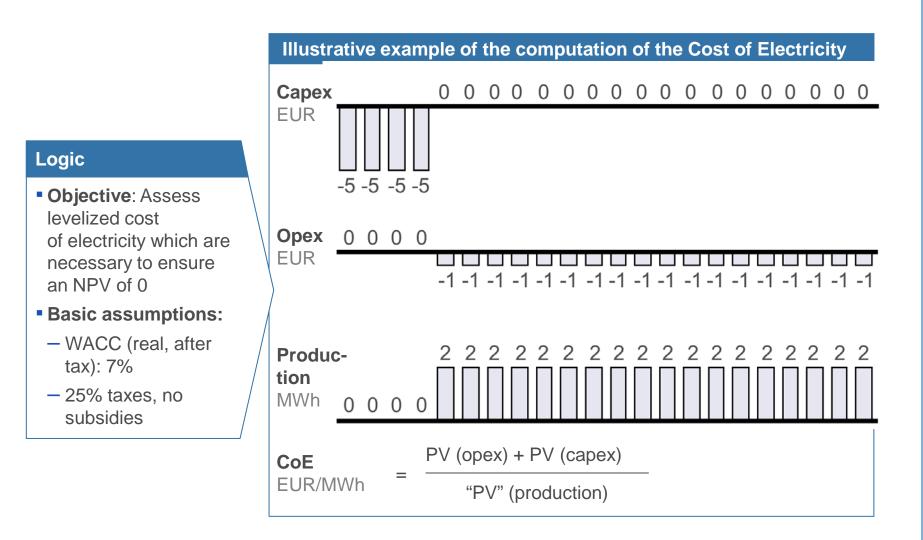
SOURCE: Stakeholder workshops; team analysis

Basic assumptions for generation technologies

Type of	generation	Generation technologies	Capex 2010 €/KW	OPEX fix €/KW	OPEX variable €/MWh	FUEL 2010 €/MWh
		Coal Conventional ¹	1,400-1,600	18-22	~1	20-25
		Gas Conventional	700-800	13-17	~1	45-50
		Coal CCS ²	2,700-2,900 ³	60-80	~3	26-31
Fossil		Gas CCS ²	1,500-1,600 ³	35-45	~2	55-60
		Coal CCS Retrofit ³	1,250-1,450 ³	60-80	~3	26-31
		Gas CCS Retrofit ³	750-950 ³	35-45	~2	55-60
		Oil	750-850	15-20	~1	100-150
Nuclear		Nuclear ⁴	2,700-3,300	90-110	~0	7-9
		Wind Onshore	1,000-1,300	20-25	~0	~0
	Intermittent	Wind Offshore	3,000-3,600	80-100	~0	~0
		Solar PV	2,400-2,700	20-25	~0	~0
RES		Solar CSP ⁵	4,000-6,000	180-220	~0	~0
	Non-	Biomass dedicated	2,300-2,600	13-15	8-10	45-55
	Intermittent	Geothermal	2,700-3,300	90-110	~0	~0
		Hydro	1,800-2,200	5-10	~0	~0

1 Taking an average between hard coal and lignite 4 Lower assumption for France, higher for the rest of the countries 2 Starting in 2020 5 Including storage 3 starts in 2020, additional to conventional plants for retrofits

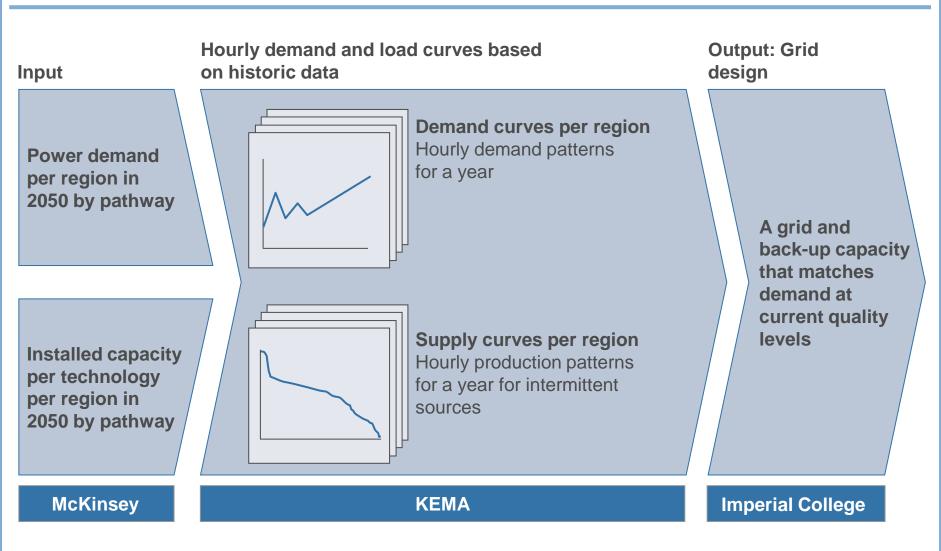
Basic assumptions for generation technologies



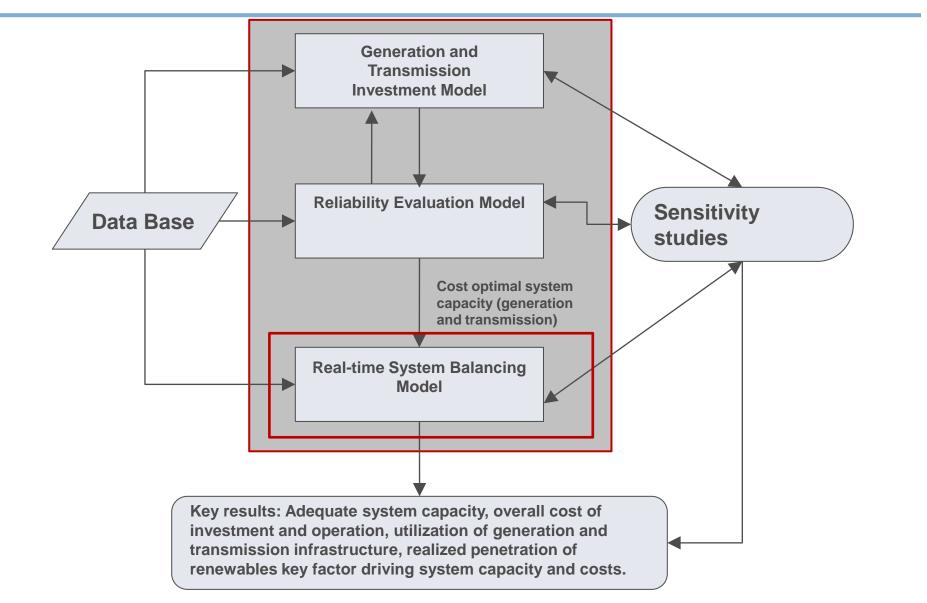
Type of	generation	Generation technologies	Actual load factor input before grid modeling Percent	Construction time Years	Lifetime Years	Ramp up and down % of max output/h
		Coal Conventional	86	4	40	40
		Gas Conventional	60 ¹	3	30	50
		Coal CSS	85	5	40	40
Fossil		Gas CCS	60 ¹	4	30	50
		Coal CCS Retrofit	85	5	40	40
		Gas CCS Retrofit	60 ¹	4	30	50
		Oil	21	3	30	60
Nuclea	r	Nuclear ⁴	90	7	45	40
	Intermittent	Wind Onshore ²	30	2	25	Based on
		Wind Offshore ³	37	2	25	available energy
		Solar PV	10-17	1	25	profile
RES		Solar CSP ⁴	47	3	30	40
	Non- Intermittent	Biomass dedicated	80	2	30	40
		Geothermal	91	4	30	40
		Hydro	~35	4	50	Fully flexible ⁵

1 Maximum possible load factor is >90%

3 Load factor increases from 37% to 45% for new builds in 2050 5 Constrained by available energy & reservoir size limitations 2 Load factor increases for new builds from 30% to 35% in 2050 4 Including storage



The grid system is designed by optimizing three elements, transmission investment, generation investment & operating costs


	Ensure adequate generation capacity	With the available transmission	To optimize the cost of operatir the system	
Description	 Add back up and transmission capacity and optimize such that the system is able to meet peak every hour over the year 	 Balance the investments in generation given the available transmission 	 Schedule and dispatch gener Allocate reserv Includes stoch wind and solar generation Add transmissi economically dispatch gener 	ves seek optimal cost astic outcome – modifying investments in transmission and generation and
Outputs	 Generation investments for additional capacity to make system reliable "back-up generation" 	 Transmission in Transmission flo 	DWS	Cost of balancing Generation utilization Volumes of curtailment of renewables and others

Model Structure

Regional transmission has been calculated assuming ~27%

I ransmission cost for		
element C	Share in	Share of
Transmission mix elements ¹	cost mix	cost
AC OHL long distance average terrain	56%	25%
AC OHL tough terrain (short distance)	6%	9%
AC underground (short distance) urban	10%	27%
AC subsea (medium distance)	1%	5%
TOTAL AC	73%	
DC subsea (long distance)	5%	20%
DC long distance underground cable	4%	6%
DC long distance OHL	18%	9%
TOTAL DC	27%	

1 Including substation cost

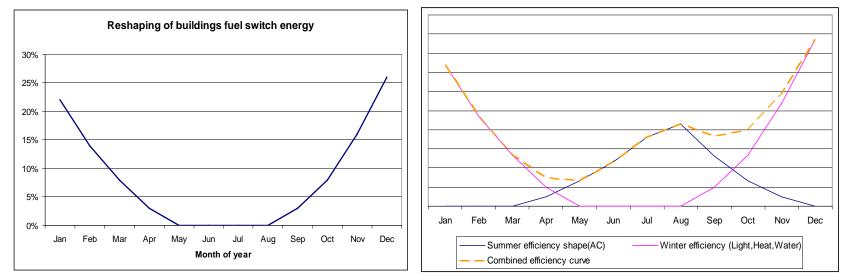
Transmission cost for

Average transmission cost between centers of gravity of EUR 1,000 MW/km based on:

- Current price levels
- A mix of AC and DC
- A mix of overhead lines and underground cables
- Substations are included, distribution is excluded

Both energy efficiency and heating affect the load profile, topdown analysis suggests ~5% increase in peak over historic and Climate Foundation profile

Review how fuel shifting and energy efficiency influences the 2050 demand profile


Baseline model used historic profile and assumed fuel shifting and energy efficiency effects were evenly distributed across the year

Challenge to review impact of energy efficiency and fuel shifting in different months of the year

Allocation of Buildings demand to the winter months and allocation of energy efficiency across summer for (AC) and winter (heat and light) reflecting energy usage

Additional energy associated with Building fuel shift allocated to winter months

Shape of the cumulative effect of energy efficiency across the year

